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1. INTRODUCTION

The NASA Standard Reference Model (NASREM) architecture is a hierarchical

model structured into six control levels such that at each level, a different fundamental

mathematical transformation is performed. The six levels are: Operation Control, Ser-

vice Bay Control, Object/Task level, Elementary Moves (e-move), Primitive level, and

Servo]Coordinate Transfer level.

Each level of the hierarchy is functionally partitioned into three modules : task

decomposition, world modeling and sensory processing. The world modeling module is

the knowledge base which has the internal representation of the external world. It

maintains geometric models of the world and stores lists of objects and their attributes

in each level. It generates predictions and evaluation functions to be used by the sen-

sory processing module. The sensory processing module computes temporal and spatial

correlations, convolutions, differences and integrations. The sensory module's output

will confirm or deny the prediction provided by the world model, thus the information

stored in the world model will be updated.

In this project, we studied world modeling and sensory processing for laser range

data. World Model data representation and operation were defined. Sensory processing

algorithms for point processing and linear feature detection were designed and imple-

mented. The interface between world modeling and sensory processing in the Servo

and Primitive levels was investigated and implemented. In the primitive level, linear

features detectors for edges were also implemented, analyzed and compared.

Section 2 of this report surveys the existing world model representations. It also

presents the design and implementation of the Y-flame model, a hierarchical worm
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model. Section 3 contains the interfaces between the world model module and the sen-

sory processing module. Section 4 describes the linear feature detectors designed and

implemented.
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2. WORLD MODEL REPRESENTATION

In order to design a World Model representation of space platforms, different

existing methods proposed by various researchers in the field were studied, compared,

and contrasted. In this section, we present an analysis of the advantages and disadvan-

tages of the different World Model Representations. A data structure suitable for the

modeling space platform and range data was designed and implemented. This World

Model is a hierarchical feature based representation. It is also compatible with

NASREM (NASA Standard Reference Model) system and HARPS (Hierarchical Ada

Robot Programming System ). The hierarchical feature based data structures and pro-

grams were implemented in the programming language Ada.
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2.1 Design Criteria of World Models

As the world model is a key component of any intelligent machine, much research

is focused on it and many different representation methods have been proposed, tested, and

implemented. No matter, however, which exact scheme is used, the modeling system must

be able to adequately model the complexity of the objects in the environment, and it must

contain enough structure to allow the low level sensory data to map into the model during

the robot operation. A good world model representation scheme should posses three

properties amongst others: validity, completeness, and uniqueness. These properties assure

that a representation does not generate nonsense objects (validity), that a given

representation gives rise to only one object (completeness), and that a given object possesses

only one representation (uniqueness).

Hence, according to Peter K. Allen [4], when designing a world model for an

autonomous system, the following criteria have to be taken under consideration:

1) Computability_ from sensors. A model must be in some way computable from the

sensory information provided by the low level sensors. If the model representation scheme

is very different from the sensory information, then transformations which may not be

information preserving are necessary. These transformations can also make the recognition

process slow and inefficient. A better situation is one in which the model representation

scheme is directly related to the sensors scheme.

2) Preserving _tructure and re!ati0n$, Models of complex objects need to be broken
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down into manageable parts, and maintaining relationships between these parts in the

model is important. In recognizing the environment, relational information becomes a

powerful constraint. As an object is decomposed, it should retain its "natural" segmentation.

This is important in identifying partial matches of a workspace.

3) Explicit specification of features. Feature based identification has been a useful

prototype in recognition tasks. If features of objects are computable, then they need to be

modelled explicitly as an aid in the recognition process. Most object recognition systems

are model-based discrimination systems which attempt to find evidence consistent with a

hypothesized model, for which there is no contradictory evidence. The more features that

are modelled, the better the chances of a correct interpretation.

4) Ability to model curved surfaces. Some domains may be constrained enough to

allow polyhedral models or simple cylindrical objects. However, most domains need the

ability to model curved surface objects. The models must be rich enough to handle doubly

curved surfaces as well as cylindrical and planar surfaces. This complexity precludes many

representation schemes, particularly polygonal networks, which have simple computational

properties, but become difficult to work with as the number of faces increases.

5) Modeling ease. Very rich, complicated models of objects are desired. However,

unless these models can be built using a simple, efficient and accurate procedure, it may

be prohibitive to built large data bases of objects. Modeling is done once, so there is an

acceptable amount of effort that can be expended in the modeling effort. As designs

change and different versions of an object are created, incremental changes are desired, not

a new modeling effort.

6) Attributes easily computed. Whatever representation is used, it is important that

geometric and topological measures are computed efficiently and accurately. For surfaces,
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this means measuressuchasarea, surfacenormal and curvature. For holes and cavities,

this means axes,boundary curvesand crosssections.Analytical surfacerepresentationsare

well suited for computing thesemeasures.
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2.2 World Model and Sensory Data

The world model builds its internal representation of the workspace based on the

data returned by the sensory system of the robot. As the sensing means are so essential in

the update of the world model, a brief introduction to the current tendencies in robotic

sensing systems will be beneficial in understanding the basic principles of world modeling.

Work environments are not static and can not always be constrained. There is much

uncertainty in the world, and humans are equipped with powerful sensors to deal with this

uncertainty. Robots need to have this ability also. There is at present much work going

on in the area of sensor design. Range finders, tactile, force/torque, and other sensors are

being developed.

Much of the sensor related work in robotics has tried to use a single sensor, typically

vision, to determine environmental properties. However, not all sensors are able to detect

many of the properties of the environment that are deemed important. As a consequence,

the world model is fed inadequate and inaccurate data. This requires the use of complex,

time-consuming algorithms in order to improve the quality of the input. Still, a wrong

environment representation may be obtained, which will eventually lead to mistaken robot

operation•

A much more promising approach is to supplement the single sensor data (in most

cases the visual information) with other sensory inputs. To increase the capabilities and

performance of robotic systems, in general, requires a variety of sensing devices to support



the various tasks to be performed. Since different sensor types have different operational

characteristics and failure modes, they can, in principle, complement each other. This is

particularly important, because multiple sensor systems can be used to generate improved

world models and provide higher levels of safety and fault tolerance. More specifically, the

tendency today is to additionally use tactile sensing to supplement the sparse data. While

vision remains the primary sensing modality in robotics, interest in tactile sensing is

increasing. Vision systems are unable to deal effectively with occlusion, uncontrolled

illumination and reflectance properties. At the same time, tactile information can directly

measure shape and surface properties.

However, although adding sensors to a robotic system can produce more accurate

sensing, it also introduces complexity due to the added problems of control and

coordination of the different sensing systems. It is difficult enough to regulate and organize

the activities of a single sensor system, let alone those of a multiple sensory system with

different bandwidth, resolution, accuracy, and response time that must be integrated in one

world model.
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2.3 CombinationGeometryWorld Model

When designinganautonomoussystem,a researcheralwayshasa specificapplication

in mind. The first componenthehas to selectis the form of input. In otherwords,hehas

to decide about the sensorysystemof the robot. Once the sensorymeansare known, the

world model canbe developed. However, the choice of sensorydevicesand the selection

of a specific application imposestrongconstraints in the designof the world model. As a

consequence,each researchercomesup with his own variation of world modeling, leading

to a plethora of world models.

One approach is the model supportedby M. Goldstein, F. G. Pin, G. de Saussure,

and C. R. Weisbin [19]. This schemedescribes the shapeof objects using spheres. The

whole idea is basedon combinatorial geometry,also known asConstructiveSolidGeometry

(CSG), where solidsare representedascombinations of primitive solidsor building blocks,

using Boolean operations of union, intersection, and difference. The data structure used

for its representation is a binary tree, where the terminal nodesare instancesof primitives

and the branching nodesrepresentBoolean operators.

Using range data, eachmeasuredpoint on the objects surface is surroundedby a

solid sphere with a radius determinedby the range to that point. Then, the3-D shapesof

the visible surfacesare obtained by taking the Boolean union of the spheres. In more

detail, the result of a range scanis a matrix of distancesfrom the sensorfocal plane to an

object surface. In other words,the coordinatesof discretepoints on the vis_le parts of the
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boundary surfacesof different objects in the external world are known. Let a be the small

angle between two successive reading directions of the sensor. First each discrete point i,

is surrounded by a small sphere with a radius ri=max(Ri*sin * Ri), where R i is the

associated measurement error, R i is the range sensor measurement, and the subscript i is

a reference to a specific object point. The approximate 3-D shape of the visible boundary

surface is obtained directly by taking the union of all the spheres.

Boundary d stortion

Sphere Representation

The reason for using spheres as primitive solids, is to keep the representation as

compact as possible. Describing the sphere for a particular discrete point in space means

adding only one additional parameter, the radius, to the coordinates of the discrete point

which are provided by the sensor.

To avoid the appearance of "holes" in the geometry and to take into account the

range uncertainty, ri is defined in such a way, that neighboring spheres are highly
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overlapping one another. Thus, the boundary surface of the union of all spheres is

continuous (without "holes') from the robot's point of view. Still, it is obvious that by using

spheres, the shape of the boundary surfaces is distorted. However, the distortion is

proportional to the range at each point, which means that the resolution of the model is

improved as the range to the surface is decreased.

A very useful feature of this combinatorial geometry representation is its efficiency

in calculating distances to 3-D surfaces in a desired direction. The range data provided by

the sensor quantify the distances from the sensor focal plane (the center of the robot) to

the object surfaces.
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This model was developed by emphasizing the following aspects: minimal fast

memory for storage, efficiency in navigation, minimal computation, and no a priori

knowledge. It is ideal for fast building up of world models, but is not very accurate in the

sense that surface boundaries are distorted. In addition, although Constructive Solid

Geometry (CSG) is complete in its representation, it is not unique. However, boundary

distortion of the type involved in this scheme, will not affect the performance of navigation.
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2.4 Polygonal Planar Hulls World Model

Arnaud R. de Saint Vincent [12], on the other hand, proposed a different world

model representation that produces a planar description of the occupied space consisting

of a set of non-convex polygonal hulls enclosing the ground projected 3-D features. The

map is built from 3-D stereo data obtained from the robot's standpoint.

For the stereo vision, three cameras positioned at the vertices of a right triangle are

used. Stereo-correspondences are searched twice, between the images produced by camera

1 and camera 2 (horizontal epipolar lines), and between images produced by camera 1 and

camera 3 (vertical epipolar lines).

In order to provide data for a higher-level understanding of the scene (detection of

main features such as walls, doors, etc.) and for easier recognition of already seen parts of

the environment, vertical planes are searched among the 3-D segments. This is done by a

prediction and verification algorithm or/and by use of a priori knowledge of the world,

when available and applicable.

Then, the geometric map of the occupied space is built. The construction of the

model must take into account not only the previously detected vertical planes, but also a

set of sparse 3-D features (segments) which belong to unmodeled obstacles.

In this case of sparse depth measurements, it is in general impossible to determine

the exact free space, because the position of the physical surfaces linking the perceived

segments can not be predicted. However, it is possible to compute a description of
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"certainly occupied" areas, relying on other sources of information, such as other sensory

devices, to further remove ambiguities.

Nevertheless, this representation scheme enables to avoid this problem by building

an intrinsic geometric description of the occupied space. This model uses a set of planar

polygonal nonconvex hulls which enclose the ground-projected perceived segments.

This representation is based on a new family of hulls called L-convex hulls. The

definition of these hulls is purely geometric, and the resulting model of the occupied space

is thus independent of any assumption on the world structure. The main property of the

model is that, though it does not, in general, represent the real shapes of the objects (as this

is unpredictable with a single sensory system), the topological properties of the free space

are preserved. What this means is that, given a collision-free trajectory of the robot in an

environment, every point of this trajectory will be in the free space as described in this

model.

For constructing the L-convex hull of an obstacle, the input data consists of the

coordinates of the vertices Pi of the obstacle. For each vertex its neighborhood graph is

calculated. This neighborhood graph is a set of all the couplets (Pi,Pj), where Pi and Pj are

neighboring vertices. Let L be the diameter of the robot. The L-convex hull is the smallest

set C such that, for any couple (Pi,Pi), if (Pi,Pj) belongs to the list of external arcs and

D(Pi,Pi) < L, then the segment [Pi,Pi] is included in C.

As no exact description of obstacles is represented, but the topological properties of

the free space are preserved, this model is best suited for navigation projects. The fact that

no environment assumptions are made, gives flexibility to the scheme. In addition, the

employment of a priori knowledge, if applicable, is an extra advantage. However, for the

convex hulls to be constructed, the neighborhood graph of each and every vertex of all the
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obstacles must be calculated, so the algorithms involved in this model are time consuming.
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2.5 Geometric World Model

Another researcher, James L Crowley [10], suggested the use of a geometric world

model which illustrates the environment in form of line segments. The local model, as well

as the raw ultrasonic range data are described as line segments, represented with the

following data structure.

In this structure, the minimal set of parameters is:

PM : mid-point of the line segment in external coordinates,

0 : orientation of the line segment,

h : haLf-length of the line segment,

O"e : uncertainty (standard deviation) in the orientation,

O'c : uncertainty in position perpendicular to line segment.

In addition, there is a set of redundant parameters that can be used like:

a,b : for the line equation a=sin(O), b=-cos(O),

c : perpendicular distance to the origin, c----ax-by,

d : distance from the perpendicular intercept to the origin, to the midpoint of the segment,

Pr : end-point to the right of the segment,

PI : end-point to the left of the segment.

Line segments are also labeled with a confidence factor, CF. A segment with CF<0

is removed from the model.

For constructing the line segments, the information is extracted from the visible free-
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space around the robot, known as sonar horizon. The sonar horizon is an array of 24

positions in external Cartesian coordinates. The points in this array are the vertices of a

polygon of immediately visible free-space around the autonomous syslem. An uncertainty

is stored along each point in the sonar horizon.

By detecting range measurements that are mutually consistent, sensor noise is
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filtered.

Line segments are formed in terms of external coordinates to permit the integration

of range measurements while the robot is moving. After a segment has been detected and

formed, the uncertainty of the robot's position is added to the segment.

Small line segments, just obtained from ultrasound data, are matched to the

composite model. Matching is a process of comparing each of the segments in the

composite local model against the observed segment to detect similarity in orientation,

colinearity and overlap. The longest line segment in the composite model that passes all

three tests is selected as the matching segment. This segment is then used to correct the

estimated position of the robot and to update the model.

As a conclusion, a geometric model can be implemented at cases where sensor

observations are noisy and imprecise, by using an explicit model of uncertainty. This model

provides a technique for a vehicle to maintain an estimate of its position as it travels, even

in the case where the environment is unknown.

On the other hand, the geometric model leads to sparse and brittle world

representations. This scheme requires early decisions in the interpretation of the sensor

data for the instantiation of specific model primitives. Additionally, it does not provide

adequate mechanisms for handling sensor uncertainty and errors (compared to other

models), while it relies heavily on the adequacy of the precompiled world models and the

heuristic assumptions used. All these factors introduce strong domain-specific dependencies.

Thus, geometric world models may be useful in highly structured domains, but have limited

capabilities in more complex environments.
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2.6 Hierarchical Geometric World Model

This hierarchical geometric world model used by David J. Kriegman, Ernst Triendl,

and Thomas Binfold [28], employs a map which is built bottom up. The lowest level of

information is closest to the actual sensor measurement, while higher levels of the hierarchy

become more abstract and symbolic. At the lowest level are the points and lines detected

from the sensor data. This information is fit to a model of generic objects such as wails,

doors, and windows. Higher level structures are composed of lower level patterns. For

example, two parallel walls that bound an elongated region of free space would be a hall,

and hallways are found in buildings. So, especially in robot navigation, when searching for

a route between rooms in a building, search would start at the building level for route and

then find paths along successive levels of the map.

The interesting point in the model is that it uses four sensing modalities: vision,

acoustics, tactile, and odometry. Each of them returns different environmental information,

using different representations, which are combined in a common world model.

Stereo vision uses two onboard cameras and returns three dimensional location of

vertical lines within its field of view. The data gathered is generally the most accurate

sensed measurement available. However, stereo has a high computational cost and covers

only a rather narrow field of'view. In addition, the uncertainty in distance measurement

from stereo, even at moderate distances, becomes larger than the angular uncertainty which

is complementary to the acoustic sensing system.
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This acoustic sensing system is composed of twelve Polaroid ultrasonic sensors

surrounding the robot, and provides direct range information at a speed of 10 readings per

second. After a scan, straight line segments can be extracted. If the length of the line is

on the order of a beam width, then there are two possible interpretations: either a straight

line, or a corner. Additionally, these straight line readings inform the model that the region

between the intelligent machine and the segment is free space. The consistency of theses
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features with the map can be ascertained, and the map can be updated. Finally, those

readings which can not be modelled as either straight lines, or corner points can be added

to the model as representing a surface patch that could lie anywhere along a 30 arc.

Because of its very low angular resolution but accurate depth measure, the acoustic system

is useful in guarded moves.

As a last line of defense, ff the vision and sensing system miss an object, there is a

tactile sensing system, composed of twelve bumpers with internal contact switches along the

edges of a nonregular dodecagon. In addition to protection, when an autonomous system

accidentally crashes, the bumpers provide very definite information about the presence and

location of an object. This form of data can be added to the model. Assuming that only

one object is contacted at a time, the geometry of the bumpers allow the following

interpretations.

1) If two adjacent bumpers are

contacted, then the contact is a corner

and the comer point can be localized

with a fair degree of certainty. If the

contact point is part of a wall, according

to the already created map, then the bounds of that wall are detected.

2) If only one bumper is contacted, then the point of contact is

distribution along the length and depth of the bumper.

a uniform
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3) If three adjacent bumpers are contacted, the contact is planar and the direction

of the contact is that of the central bumper with an uncertainty based on the depth

of the bumpers.

Finally, odometry determines the intelligent machine's position. As all sensing

devices are on the robot, all the measurements are relative to the position of the whole

autonomous system. Thus, the robot's orientation must be accurately measured for the

creation of a reliable world model. For this purpose, as the intelligent machine moves,

shaft encoder readings are mapped through the kinematics, to determine robot velocity, and

are integrated to calculate vehicle location.

This model requires no a priori knowledge of the environment, but needs the

preexistence of some object definitions, in order to combine low level data to higher level

information. The uncertainty involved in this method can be reduced by applying a Kalman

filter to the data. The hierarchical geometric world model was initially developed for

navigation in buildings, and thus the higher level objects were walls, rooms, buildings etc..

In other environments, like manufacturing, the same model can be used but the objects this

tim_ will be cylinders, nuts, and other manufacturing parts.
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2.7 AttributedGraph World Model

This world model describedby A. C. Kak A. J.Vayda, R. L Cromwell, W. Y. Kim,

and C. H. Chen [24]isan attributedrelat/onalgraph in which both nodes and arcshave

attributes. The nodes are surfaces and the arcs are relations between surfaces. Each

individual object model is a connected graph and the scene description is a graph but it is

not necessarily connected.

The first step is to derive a boundary representation of the object model from the

Constructive Solid Geometry (CSG) representation. As already mentioned, the CSG

representation of a complex object has a tree structure, where the leaf nodes are prirn/tive

objects and the non-leaf nodes are primitive operations. The set of primitive objects used,

depends on the particular system, but the most common ones are block, cylinder, sphere,

and cone. The prim/rive operations are un/on, intersection, and difference. With a

sufficient set of prim/tire objects and these three prim/five operations, any arbitrary complex

object may be defined. For example, for primitive objects, the surface representation is

simple: a block has 6 surfaces and 12 adjacency relations, a cylinder has 3 surfaces and 2

adjacency relations. Complex objects have larger graph representations.

This attributed graph world model is actually implemented by using Prolog clauses.

The justification for this selection is that Prolog's declarative structure lends itself well to

thistype of task.The databaseconsistsof threetype offactswhich specifyobjects,surfaces

and relat/ons.
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An objecthas an identifyingname, a specificationof itstype(block,cylinder,toroid,

etc.),a listof surfacesthatitiscomprised of,and a listof relationsbetween thosesurfaces.

object(Nam e,Type,Surfaces,Relations)

Every surfacehas at leastfiveattributes:the identifyingname, the typebased on

curvatureproperties(planar,cylindrical,conical,spherical,ellipsoidal,and toroidal),the

area,and the positionand orientationof the surfacewhich isderiveddifferentlyforeach

type of surface.Other attributesmay be specifiedas necessary.

surface(Name,Type,Area,Position,Orientation,Attributes)

Each relationhas a name, a type,and two surfacesthatsharein the relat/on.The

most usefultypeofrelationistheadjacencyrelation.Attr_utes are specifiedasnecessary.

Two useful attributes are the angle between the orientation values of the surfaces and the

type of edge which separates the surfaces (concave, convex, jump).

relation (Name, Type, Attributes,$urf ace l, Surf ace2)

As an example, what follows is the object definition of a specific cylinder with

diameter = 3.5" and length = 4".

object (cylinderl,

cylinder,

lsurface(top, planar,9._ 15, l_[ldeptl_ 4]]),

surface(cy_cylindrica,_ 44,_23,..24,[[deptl_3.5]]),

surface (bottom, planar, 9. 6,_31, _3 2, [ [depth, 411) l,

[relation (_9_ adjacent, [Jangle, 90], [edgetype, convex]],

surface (top, plan ar, 9._ _15, ..16_ [ [dep th, 4] ] ),

surface (cy _cyl'mdrical, 44,_23,_2 4, [[depth, 3.511) ),

relation (103,adjacent, [[angle, 90], [edsetyl_,convex]],

27



surface(cylcyti_ 44,.93, 3,t, lldepth,3.511),

surface(bottom,ptanar,9.6,..3L..3 2,[[depth, 411))l ).

The represented objects can be even more detailed by the addition of other

properties.

For scene analysis, the problem is rephrased in partitioning the scene into subgraphs

such that each subgraph is also a subgraph of a known object model. By replacing each

subgraph by the corresponding complete object model graph, a 3-D description of the

scene is formed. Inference checking can be used to ensure that the model of the scene is

valid.

The input from the structured light scanning gives the x, y, z coordinates of a set of

points on surfaces. The range map determined from these coordinates allows computations

of surface curvatures and surface normals. With range, curvature, and surface normal

information, the segmentation of the scene into distinct surfaces can be accomplished.

Next, the attributes of these surfaces are found, and relationships between surfaces are

determined.

This graph scheme requires some a priori knowledge. Once surfaces are totally

described and the relations among them are detected, the information for recognizing the

represented object must preexist in some database. Still, for an intelligent machine to make

a map or generally picture the environment, it is not absolutely necessary to identify the

type of obstacles that are surrounding it. What is actually required depends on the robot's

application. The model is flexible and expandable, as there is no limit in the number of

different types of objects that can be identified and in the number of properties that can

be included in relation, surface, and object descriptions. However, to extract all this

information from only fight scanning involves a high degree of computation, and
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vulnerability to error.
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2.8 Feature SpaceGraph World Model

Francis Merat and Hsianglung Wu [34], on the other hand, came up with another

representation scheme, the feature space graph world model. Their idea is to describe

objects in terms of features, where a feature is some relation defined on a closed set of

points. To represent an object a feature space like the one in the following figure is

defined.

Points are entities containing position, normal, and curvature measurements. A

patch is a small area on a surface and is denoted by: the centroid of the patch, the

curvatures in various directions at the centroid, the patch class, and the neighboring

relations between the patch and the neighboring patches. A surface is a dosed set (,graph)

of connected patches, which have uniform properties. An object is a set (graph) of

connected surfaces with a set size greater than one.

Based on the feature space hierarchy, objects are described in terms of features. The

description of an object includes the surface equation, the orientation, and the centroid of

the surface or object under examination. The properties of a patch or point can be easily

derived from the surface equation and are left out in the final object description.

As an example, the feature space graph model would represent the information for

the following object as described further on.
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Object Name: Sphere-on-Block

Object ld: 1

Centroid: (0,0,0)

Surface_Graph: (0,1), (1,2), (1,4), (1,5), (1,6), (2,3),

Reference Surface: 0

Feature Level.. Object

Orientation: (0,0,0)

(2,5), (2,6), (S,4), (S,S), (3,6), (4,5), (4,6)

Surface Name: Sphere

Surface Id: 0

Centroid: (0,0,0)

Surface Equation: 1

0 1

0 0

0 0

Neighboring Surface: 1

0 0

0 0

1 0

0 -2.25

0

Feature Level: Surface

Orientation: (0,0,0)

Surface Name: Plane

Surface ld: 1

Centroid: (0, 0,0)

Surface Equation.. 0 0 0 0

0000

0000.5

0 00.50

Neighboring Surface: O, 2, 4, 5, 6

Feature Levek Surface

Orientation: (0,0,0)
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Other Surfaces are shnilar to surface 1.

2

on I look
The process of creating the model is innovative. As a first step, low level features

are extracted from sparse range vision data, which gives the capacity of generating partial

object descriptions. What follows is Feature Extraction by Demands (FED). This method

feeds back the partial descriptions to guide the feature extraction process to extract more

detailed information from interesting areas, which can be used to refine the object
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description. Regions which are not perceived to contain useful information will be ignored

in further processing. As a more complete object description is generated, FED converges

from bottom-up image processing to top-down hypotheses verification to generate complete

hierarchical object descriptions.

This technique, FED, together with a concurrent processing scheme, can generate

object descriptions more efficiently than sequential methods. The method is very robust

because features can be extracted from local analysis and verified globally which means a

smaller chance of missing features. Finally, the feature space graph model is general and

expandable in the sense that many man-made (i.e. manufactured) objects can be modeled

with objects containing quadric surfaces and that the processing is independent of the

specific type of range sensor employed. This representation scheme, requires no a priori

knowledge. The object description can be generated in the early phases of operation, called

the learning period, or in the processing phase, where the object may have extrinsic

information.
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2.9 Visibility GraphWorld Model

This world modelby NageswaraS.V. Rao, S.S. Iyengar,C. C. Jorgensenand C. W.

Weisbin [38], uses a visibility graph of an environment O, denoted as VG(O). Formally,

VG(O) is defined as a graph (V,E) where,

1) V is a set of all vertices of all obstacles, and

2) The line joining two vertices u and v, u,vcV, forms an edge (u,v)_E, if it is not

obstructed by an obstacle.

VG(O) is an undirected graph and is unique for a given environment.

However, for this model to work, a couple of assumptions have to be made. First

of all, a f'mite sized robot is placed in an obstacle workspace, called terrain, populated by

unknown but finite number of polygonal objects of varied sizes and locations in the plane.

In addition, the environment is considered to be of finite size, which means that there

exists a circle of radius R > 0 which contains all the obstacles. Finally, the sensory devices,

which can be of any type, should be such as to be capable of detecting all the object

vertices and edges that are visible from the present location of the intelligent machine.

The exploration of the environment and the creation of the world model starts at any

arbitrary point in the obstacle terrain. The robot scans and moves to the nearest obstacle

vertex. This is considered the starting vertex. The autonomous system then moves from

vertex to vertex in a systematic manner. When a vertex is visited for the first time, a "scan"

operation is performed. Let the robot be located for the first time at vertex v. The
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adjacency list of v, in VG(O), is built by detecting all the vertices visible from v using the

scan operation. The vertex v is marked as visited and then pushed onto a stack. There are

two cases:

1) If v has unvisited adjacent nodes, then the robot moves to a node, say w, which

is nearest to v among the unvisited adjacent nodes. From w the same process starts

again.

2) If all adjacent nodes of v are visited, then the nodes on the stack are repeatedly

popped till a node x with at least one unvisited adjacent node is obtained. Then the

shortest paths to each of the unvisited adjacent nodes of x are computed using

Dijkstra's shortest path algorithm. The robot chooses the shortest path among the

computed ones, and moves to the corresponding unvisited node w. From w the same

process starts again.

The complete world model is built when the robot is located at vertex u such that,

all nodes adjacent to u are visited, and the adjacent nodes of each node on the stack are

visited. At this point the autonomous system moves back to the starting vertex along the

shortest path.

For this process to work, it is assumed that the visibility graph of the environment

of polygonal objects in the plane is connected, which means that there exists a path between

any two nodes. It is also assumed that the order in which the unexplored vertices of

obstacles are visited by the robot is exactly the same as the order in which the new nodes

of VG(O) are visited by a depth-first-search algorithm (if VG(O) were available).

Although the visibility graph world model seems simple to'perceive, and graph

traversal and creation algorithms are well established, it makes too many assumptions,

which make its implementation too dependent on the existence of a specific environment.
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In addition, although for each obstacle vertex only its position needs to be stored (except

its adjacency list), graph search and shortest path algorithms are neither simple nor fast.
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2.10Face-to-FaceCompositionGraphModel

Two other researchers,Leila De Floriani and George Nagy [11], proposeda formal

representation of a family of solid objectsfor advancedengineering applications,calledthe

Face-_tg-FaceComposition (FFC) graph. This isa multi-rooted hierarchical structurebased

on boundary representationand is capableof accommodatingdifferent conceptualviewsof

the sameobject.

The FI_Cgraphof an object is a directed acyclic multigraph. Each node represents

a valid single-shell volumetric component (a shell is any maximally connected set of faces

on the building surface of an object). Arcs between nodes correspond to pairs of perfectly

abutting connection faces. If an object consists of disconnected, non-contiguous

components, then these components correspond to different connected components of the

FFC graph. However, a single connected component of the FFC graph can descn'be an

object consisting of multiple shells.

Single nodes are internally described according to one of the accepted boundary

models. The definition of the FFC_ graph is independent of the particular model chosen to

represent individual components. This model is, therefore, modular as any geometric or

topological modification of a single component, which does not affect its connection entities,

is local to that particular component.

Each node has one or more parents, except for an (arbitrary) set of root-nodes called

the base of the FFC graph. The base may be the largest component, the baseplate, or the
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floor, on which everything rests, or any other component chosen as the starting point. The

resulting hierarchy defines a valid partial order for constructing the object starting at the

base by successive addition or subtraction operations.

At an abstract level, each component of the FFC graph can be viewed as the

collection of its connection faces, which define the interface of such a component.

Connection loops, edges and vertices of a single component of the FFC graph.are attached

to their connecting faces.

An FFC graph of an object can be constructed by building its single components

separately and then combining them by successive pairwise composition of distinct FFC

graphs. A node in the FFC graph contains the boundary description of a component and

thus can be constructed from sensory data. With each primitive topological entity (face,

edge, vertex) an appropriate geometric descriptor is associated. The adjacency topology and

the geometry are well separated and in principle, a parametric representation of the surface

can be accomplished. Complex objects can be constructed from distinct models of simpler

models through merging operations.

What is new and different in this scheme from other graph models is the imposition,

either by the user or by an algorithm, of an arbitrary, but valid, partial order of object

components. The model allows for flexibility in the representation used in single-shell

components. As a graph, it does not make a very efficient use of storage. No a priori

knowledge is needed. This method is better suited for design and manufacturing

applications than navigation and recognition projects.
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2.11 Topologlcal World Model

This method, introduced by Benjamin J. Kuipers and Yung-Tai Byun [30], is inspired

by the study of cognitive maps which humans use. The topological model consists of nodes

and arcs, corresponding to distinctive places (DPs) and local travel edges linking nearby

distinctive places. A place in the environment corresponding to a node in the topological

model must be logically distinctive within its immediate neighborhood by one geometric

criterion or another. Each distinctive place has its signature, which is defined to be: the

subset of features, the distinctiveness measures, and the feature values, which are maximized

at the place. A hill-climbing search is used to identify and recognize a distinctive place

when the robot is in its neighborhood. While exploring, both the signature and the local

maximum must be found. While returning to a known place, a robot is guided by the

known signature. Travd edges corresponding to arcs are defined by Local Control Strmeg/_

(LC$), which describe how the autonomous system can follow the link connecting two

distinctive places.

A set of nd_ is used to decide whether a robot instance is in the neighborhood of

a d'mincffveplace (DP) and what distinctive features can be maximized in the neighborhood.

Each rule consists of assumptiom and a decision for the distinctive features. Once the

robot instance knows what distinctive featur_ can be maximized locally in the

neighborhood of a distinctive place (DP), a hiU-ciimbing search is performed around the

neighborhood looking for the point of maximum distinctiveness. When a distinctive place
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is identified, it is added to the topological model with its distinctiveness measures,

connectivity to edges, and metrical information. Some measures include the following:

1) Extent of distance differences to near objects.

2) Extent and quality of symmetry across the center of the robot or a line.

3) Temporal discontinuity in one or more sensors, given a small step.

4) Number of directions of reasonable motion provided by the distinct open spaces,

with a small step.

5) The point along a path that minim_' es or maximizes lateral distance readings.

Travel edges, on the other hand, are defined in terms of Local Control Strategies

(LCS). Once a distinctive place has been identified, the robot moves to another place by

choosing an appropriate control strategy. While following an edge with a chosen strategy,

the robot continues to analyze its sensory input for evidence of new distinctive features.

Once the next place has been identified and defined, the arc connecting the two distinctive

places is procedurally defined in terms of the LCS required to follow it.

Another set of production rules is used to decide a proper Loca/Control Strategy

(LC$) depending on the current sensory information. The current LCSs are:

1) Follow-Midline. Follow the midline of a corridor.

2) Walk-Along-Object-Right. Walk along the right side of a large space.

3) Walk-Along-Ob_fect-Left. Walk along the left side of a large space.

4_.)_.])._]:_ Walk blindly.

The current position is described topologically, rather than metrically. When a robot

instance is at a distinctive place, the current position is described by: the current place

name, the cun, ent orientation in degrees, and the travel edge through which the intelligent

machine instance has come to the current place from the previous place. When a robot
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instance is on an edge, the current position is described by: the previous place name, the

current orientation, and an "On-Edge" indication.

While the autonomous machine explores, it uses an exploration agenda to keep

information about where and in which direction it should explore further to complete its

exploration. If the exploration agenda is empty, it means that there is no known place

with directions requiring further exploration.

Topological world modeling was tried in the same environment with 0%, 5%, and

10% error rates in sensor readings. In all cases the correct map was constructed, but as the

error level increased, the correct path was found in repeated trials, making the process

much slower.

Generally, this modeling scheme overcomes the high vulnerability to metrical

inaccuracy in sensory devices and movement stimulators. This method does not depend

critically on the choice of sensors and movement actuators. In environments dominated by

obstacles and extended landmarks, a topological map provides a more robust environmental

representation than, for example, regions related by adjacency.

Still, local geometry, shape of near objects, distances and directions to obstacles etc.

is metrical information and as such subject to error. However, averaging and continuous

accumulation of this data in the exploration and navigation stage minimizes metrical error.

In addition, continuous sensory feedback is used to eliminate cumulative error.
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2.12 Space-Time Octree World Model

The main characteristic of this world model designed by K.ikuo Fujimura and Hanan

Samet [16] is that it includes time as one of its dimensions. In other words, a three

dimensional space representation is used, where time is the third dimension. (Of course, in

other applications, a four dimensional space representation can be used, where time will

be the fourth dimension). An object, say O, moving in a two-dimensional plane can be

regarded as a three-dimensional stationary object whose volume is the trajectory that is

swept as it moves. If a point (x,y,t) is inside that volume in space-time, then the two-

dimensional point (x,y) is occupied by object O at time t. Therefore, an interference

between two objects in three-dimensional space means that a collision has occurred in the

two-dimensional plane. Note that two different objects which occupy the same location at

different times don't collide, and will occupy different locations in space-time.

Assuming that the motion of the obstacles doesn't involve rotation, as long as a

polygon moves at a constant speed, the trajectory (i.e. the volume swept by the polygon)

becomes a polyhedron in three dimensions. A polyhedron can be modeled in terms of its

vertices, edges, and surfaces. A tree structure, serving as an index to the world model yields

efficient access to a location.

Everything in the workspace is defined in a world with bounded x, y, and t values.

A point in the space is represented by (x,y,t) where xl<x<x 2, yl <y<y2, and tl<t< h. x and

y are measured in terms of distance, while t corresponds to time. Usually, it is convenient
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to let x_=y_=tI =0 and x2=Y2- Note, that time is also bounded. In this world, every motion

of an object on the two-dimensional plane during the time period t_ and t2 is represented

as a three dimensional object.

The index tree is built by repeatedly subdividing three dimensional space-time into

eight subspaces of equal size called cells, until each cell satisfies one of the following

conditions:

1) A cell contains pan of the trajectory of a vertex of an obstacle.

2) A cell doesn't contain any part of the trajectory of a vertex, but contains part of

the trajectory of an edge of an obstacle.

3) A cell doesn't contain any part of the trajectory, so it is empty.

4) A cell is entirely contained in the trajectory, and thus is full.

The cells defined by these criteria are called respectively vertex cells, edge cells, empty

cells, and full cells. This decomposition of space is similar to the one followed in the octree

representation.

Building this space-time tree is also performed in a way similar to simple octree

creation. Initially, the entire workspace is treated as a single cell which is represented as

a tree containing one node. If any of the conditions 1 through 4 are violated by this cell,

then the cell is subdivided in eight equal sized cells, and these resulting cells are checked

for violation of conditions 1 through 4. This process is applied recursively.

The space-time octree representation is based on a cell decomposition scheme, in

which each cell, in other words each leaf node, has a simple geometry, i.e. it contains at

most the (x,y,t) coordinates of one vertex, or one edge of an obstacle. As the time stamp

is added, this world model is especially useful in the representation of environments where

moving objects exist. In these cases, this method allows to regard the moving obstacles as
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being stationary in the extended world.

This octree scheme is an expandable representation. No a priori knowledge is

needed, but information regarding obstacles would improve the performance of the model.

Still, thinking of time as the third dimension is not a very familiar concept and is useful only

in time sensitive applications. If time information is not needed, then time should not be

used as an extra dimension, especially in 3-D representations, where time would be the

fourth dimension.
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2.13 OccupancyGrid World Model

The occupancygrid model, promoted by Alberto Elfes and Larry Matthies [13,33],

is a multidimensional random field which maintains stochastic elements of the occupancy

state of the cells in a spatial lattice. It employs probabilistic sensor interpretation models

and random field representation schemes. Operations are performed directly on the

occupancy grid for a variety of robot tasks.

This representation employs a multidimensional (usually either 2-D or 3-D)

tessellation of space into cells, where each cell stores a probabilistic estimate of its state.

The cell states are exclusive and exhaustive, (P[S(C)] =OCCupied) + (P[S(C)] = EMPty) =

1, where S(C): state variable associated with cell C of grid.

The range data obtained from a given sensor r, is related to the true parameter

space range value z, by a probability density function p(r/z). This density function is

subsequently used in Bayesian estimation procedure to determine the occupancy grid cell

state probabilities.

Cells that have not been observed before, have an occupancy probability of 0.5.

There is an incremental composition of sensory information. Given a current estimate of

the state of a cell C i, P[S(Ci)=OCC/{r}t ], based on observations {r}t= {rl,r2,..,rtq,rt} and

given a given bynew observation rt._l, the improved estimate is

P[S(C_) = OCC/{r },, 1] = (p[q, :/S(C_) = OCC]* P[S(Ci) = OCC/{r}t]) /

s<ca)(ptr,. 1/S(Ci)]* P[S(Ci)/{r},])
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In this recursive formulation, the previous estimate of the cell state,

P[S(Ci)--OCC/{r)t], serves as the prior and is obtained directly from the occupancy grid.

The new cell state estimate, P[S(Ci)-OCC/{r)t.1 ] is subsequently stored again in the map.

A combination of different sensing devices can be used, as the same occupancy grid

can be updated by multiple sensors operating independently. Still, using a different

estimation method, separate occupancy grids can be maintained for each sensor system

and in some later stage all these sensor maps are integrated.

The occupancy grid model can be used in both unknown environments, and in

environments for which some prior knowledge is available. In this second case, the

occupancy grid framework incorporates information from precompiled maps.

An optimal estimate of the state of a cell is given by the maximum a posteriori

(MAP) decision rule:

" a cell C is occupied if P[S(C)=OCC] > P[S(C)=EMP];

* a cell C is empty if P[S(C)=OCC] < P[S(C)=EMP];

" a cell C is unl,Tzown if P[S(C)= OCC] = P[S(C)= EMP].

Other decision making criteria that can be used are minimum-cost estimates, or

employment of an unknown band (instead of a threshold value.)

Occupancy grids can also be used in a different mode, in three-map world models,

where many local maps are combined in a global map. A single sensor's data is called a

sensor view. Various sensor views can be composed into a local sensor map. Different

local sensor maps might correspond to different sensor types. Finally, local maps from

• multiple data gathering locations are composed into a global map of the environment.

Thus, occupational grids can take advantage of the existence of a priori knowledge,

but can be used as efficiently with no precompiled geometric models• No runtime
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segmentation decisions are necessary. The updating method of this representation scheme

allows observations performed in the remote past to become increasingly uncertain, while

recent observations suffer little blurring. The occupancy grid is a stochastic spatial world

model. It is possible to derive higher-level geometric representations or voxel models from

the grid. In addition, better world models and disambiguous sensor data are achieved

because of additional sensing, not because of additional assumptions or finer tuned

heuristics. Generally, the occupancy grid representation is simple to manipulate, and treats

different sensors uniformly. Since all sensor readings have a common interpretation and

make comparable statements in the grid framework, lbe sensor integration problem

becomes relatively straightforward. This model can be applied for the detection of moving

objects over sequences of maps. The occupancy grids represent a fundamental departure

from traditional approaches to intelligent machine perception and spatial reasoning.

However, this model has the drawback of fixed size representation, which makes

expandability hard and storage space consuming. Its major shortcoming is that the size of

the representation and the cost of the update increases linearly with the surface of the

world, and quadratically with the accuracy of the representation.
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2.14 Volumetric World Model

In the volumetric world model, proposed by Yuval Roth-Tabak and Ramesh Jain

[40], space is partitioned into a 3-D matrix of cubic voxels. Dense range data from multiple

viewpoints in an environment refines the 3-D voxel based volumetric model of that

environment. This world model permits annotations, additions and temporary overlays, so

that unexpected information and interesting features can be registered with both object and

sensory information.

The voxels in the 3-D volumetric grid are assigned three possible values: void, for

empty voxels that represent an open piece of space;full, for occupied voxels; and unknown,

for voxels for which no meaningful information has yet been obtained. In this model, no

certainty levels are assigned to the attributes for the following reasons:

1) Dense range sensors, unlike ultrasonic sensors, do not impose any uncertainty on

the location of the actual obstacles.

2) Dense range data provides readings for all the pixels in the image, and hence

there are no spatial gaps of the depth information.

3) The updating technique is model-driven, which means it uses knowledge already

stored in the model. If certainty levels were employed, in each updating step the

whole grid would be scanned, and the whole operation would be much slower.

4) Uncertainties are treated globally by using certain thresholds that can be altered

adaptively.
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The model is initially entirely unknown. The successive exploring algorithm can be

described as follows:

1) Only voxels within the scope of the sensor are checked.

2) Only voxels not yet void are checked.

3) For each of the voxels actually checked, all of the eight vertices are checked and

compared to the actual pixel in the range image that points to their position in space.

4) If the maximum distance to any of the eight vertices is smaller than the minimum

range pointed by any of the range pixels, then the voxel is void.

5) If the range of the vertices' distances intersects with the range pixels, and the

difference between the maximum and the minimum range pixels is within a certain

threshold, then a voxel is full.

6) Else it is unchanged.

The fact that eight vertices are being checked has an inherent smoothing effect on

the result. In most cases, not all vertices will fall within the same range pixel. Hence, to

a certain extent, noisy images will not have a strong impact on the result. In the fourth

step, a certain threshold margin can be added to the above requirement in cases with some

location uncertainty of known extent. This margin represents the worst case error that

might result from such a location uncertainty. The threshold on the fifth step is introduced

to avoid assigning full values to voxels which lie on, or near sharp range discontinuities.

Experiments pointed out that the method is not susceptible to noise. Whereas the

orfginal design requires no previous knowledge of the environment, precompiled maps could

be used when available. Although only dense range sensors were used in the initial

installation of the model, other types of sensors can be used and are being implemented.

By comparing information between the expected scene and the viewed scene, detection of

51



changes and movements in scene can be achieved.

On the other hand, volumetric world model is a static representation, that can not

expand in size as the environment expands. If a large maximum workspace is specified, too

much storage is wasted. In addition, the updating algorithm, in order to avoid storing

uncertainties, checks all eight vertices, resulting in time consuming algorithms.
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2.15 VisibleGrid World Model

The visibel grid world model, introduced by Roman Kuc and M. W. Siegel [29]

represents the floor plan of the environment as a two dimensional grid of viaibeIa, which

indicate which elements are visible from a particular location. A viaibel is represented by

a word in computer memory, each bit of which is assigned to a particular element.

In the initial implementation of the model three different elements are used: _,

edg._ an_ddwails_. These three components compose a cew world. Walls are simple planes,

while corners and edges are located at the intersections of planes. As acoustic sensors are

used, corners like walls produce reflections, while edges produce diffracted signals.
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A wall is detected only by the reflection that bounces directly back to the transducer.

For corners and edges to be visible, the transducer must have reflections bounces back to
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it from both planes defining the element.

Once an element in some position is detected, the visibel corresponding to that

position is updated. Each bit of the word corresponds to a particular element, and that bit

is set to 1, if the corresponding element is detected, or is set to 0 otherwise. The members

of the grid on the boundary have their visibels set to -1. A grid set to all 0s means either

an unexplored space, or an empty space. If the visibels however, have some special value

(a dedicated bit) to differentiate between empty and unexplored cells, the model can

become even more accurate.

As a conclusion, this model is conceptually simple. It is expandable as by changing

(increasing the number of bits) in the internal representation of visibels, a bigger number

of different objects can be stored. Bit manipulation is not easy, but makes an efficient use

of storage. In addition, if wanted, a priori knowledge can be used. Finally, the model is

flexible as it can be applied to higher-level, and lower-level models by simply changing the

level of the elements composing the world.
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2.16 Three-Map World Model

The model presented by Minoru Asada [5] consists of three kinds of maps, a sensor

map, a local map and a global map. Any kind of sensory data can be used. Each sensor

has its own coordinate system. Each sensor builds its own sensor map, which is nothing

more than the recorded input sensory data.

Then the local map builder builds local maps from sensor maps. While building the

local maps all the sensor maps are transformed, if needed to a robot centered coordinate

system. Then the local map, or otherwise called height map is segmented into unexplored,

occluded, traversable, and obstacle regions. Initially, the height map consists of two types of

regions: those in which information is available and those for which no data is obtainable.

The latter regions are classified into unexplored or occluded regions. Unexplored regions

are outside the visual field of the sensors. The remaining regions in this category are

labelled as occluded regions. Some regions, which are not actually occluded may be

classified as such, due to inadequate information. Finding traversable regions is

straightforward. As regions occupied by obstacles have high slope and high curvature, while

traversable regions have low slope and low curvature, the process of differentiating between

them is not complex.

If needed, a further refinement is to classify the obstacle regions into artificial objects

or parts of natural objects. For obstacle classification both the local map and the sensor

map of the intensity image are used. Each segmented region is classified according to the
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following criteria:

1) If a region has sufficient size (larger than a predetermined threshold), constant

slope (small variance of slope), and low curvature (low mean curvature and small

variance of the curvature), then the region is an artificial object.

2) If a region has sufficient size and high curvature (high mean curvature and large

variance of the curvature) and large variance of the brightness of the intensity image,

then the region is a part of a natural object.

3) Otherwise, the region is regarded as uncertain in the current system.

Finally, the global map is constructed. During the motion of the intelligent machine,

the world model produces a sequence of local maps built at different observation stations.

These maps are integrated into a global map in the robot centered coordinate system. The

local map integrator consists of two parts, the fast one matches two different local maps

to determine the correct motion parameters of the robot, and the second updates the

description of region properties.

This three-map model has the advantage of storing all sensor information, all

intermediate information, and the final global representation. This allows the model to use

and combine different data to extract more information about the environment with greater

accuracy and less uncertainty.

However, all these maps (sensor, local, global) and their refinements (regional local

map, classified local map) use extensive storage. Even when all this information is needed,

manipulating it for obtaining greater detail and accuracy, means more complex and time-

consuming algorithms.

Above all, the concept of segmenting the information into different levels gives the

flexibility of better manipulated workspace knowledge according to the desired level for the
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specific task to be accomplished.

58



2.17 Generic World Model

The ideabehind the genericmodel istohave a singlemodel which describesa broad

classof objects.This model was highlysupportedby David J.Kriegrnanand Thomas O.

Binfold[27].A genericmodel shouldnot representa particularenvironment. Instead,one

model fora specificclassexists,which includesthe classof featuresthatcan be found in

any objectof thatclass.

Given sensor information, the generic model can be partially constrained until,

ultimately, there is an instantiation that represents the actual workspace. In general, it will

not be possible to instantiate the generic model fully, but instead, sensing will impose

enough constraints necessary for the task.

A generic object should be described in terms of its function, or purpose, as well as

physical constraints. A generic model is composed of the following five aspects: classes, sets,

numbers, mapp/n_, and constra/nts.

The generic model of an object is named c/ass and is made up of named components

and constraints. Components are typed, and the types may be either another class, a set,

or an element of a set. A set may have elements which are either classes, or themselves

sets. Sets need not be finitely enumerated but may be infinke sets, where membership is

determined by the set theoretic definition of membership, which is satisfaction of a

constraint (predicate). Set operations on in_nlte sets are represented as Boolean operations

on the constraints of the set.
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Additionally, classescanrepresentmappings from a domain to a range. This is used

to represent geometric objects according to their mathematical definitions.

Constraints describe the relationship between components and subcomponents. 'They

may simply be algebraic and Boolean constraints between components with a numeric type

(e.g. pythagorean theorem). Still, other constraints may have to do with the element types,

such as two planar faces being parallel. Symbolic constraints are defined by name along

with the type of the objects which are being constrained. This allows for geometric

reasoning without having to do more costly symbolic algebraic reasoning. Symbolic

constraints may be expandable into algebraic., Boolean, or even further geometric

constraints. By expanding symbolic constraints into algebraic constraints, algebraic

cg_nstraint__mmanip_.ulation,can be used: Furthermore, constraints may be quantified over sets.

Since classes are named, one must be careful about their scope; a class is always

named with respect to a particular namespace. Finally, classes are defined in an object-

oriented manner; a class may be defined as a subclass of another class or classes leading

to taxonomJes descr_able by a directed acyclic graph. A subclass is a stria specialization

of the parent classes. Any constraint that is true for a parent class, is true for a child. A

subclass will inherit components and constraints of the parent classes, leading to issues of

multiple inheritance. If a component is defined by multiple ancestors, with different types,

then the type is determined by iteratively comparing ancestor types. If the multiply

inherited component type is a class, then the more specialized type is used as determined

by the specialization directed acyclic graph of all classes. If neither class is a specialization

of the other, then an attempt is made to create automatically a new class, which is a

specialization of the types of the component from the two ancestor classes. However, this

is not always possible because certain types may be incompatible. If the multiply inherited
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components have set types, then the spedalization of the type is the intersection of the two

type sets.

While David J. KHegman and Thomas O. Binfold [27] developed the theory of the

generic world model and explained all its components and the relationships among them,

the actual implementation was carried out by S. A. Stansfield [42].

In this installation, as the model must be able to handle the variations of the generic

models, both spatial/geometric, as well as symbolic information must be stored. Taking

these requirements into account, along with the premise of category theory that "people

represent and reason about objects based upon features," a feature based model

representation was used. This scheme consists of a hierarchy of flames and a

spatial/geometric model called the st_a6alt_o_hedron.

The idea in spatial polyhedron is that aB of the infinite 2-D views of a 3-D object

can be grouped into a finite set of equivalence classes. Informafly, the spatial po_hedral

representation may be described as follows. Imagine an object at the center of an n-sided

polyhedron. If the object were to be viewed, or sensed, along a line normal to each face

of this polyhedron, then certain components and features of the object would be viewable,

while others would not. Slight changes in attitude as the viewer moves around the object

will not result in any new features coming into view. When the viewer has moved

suftic/ently, however, then he will be sensing the object from a different perspective (or

face of the spatial polyhedron) and different components and features will be viewable.

Thus, an object is modeled by mapping to each face of the spatial polyhedron all of the

features which are expected to be-viewable along that face. This mapping consists of a list

of these features and their appearance from the specified view.

The remainder of the object representation consists of a hierarchy of frames. At the
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highestlevel, information about the object as a whole is stored. Intermediate levels contain

the components which define the object. The features which pararneterize these

components are incorporated into the spatial polyhedron. This frame representation can

carry such non-perceptual knowledge as function, ownership, etc.. Simpler objects use

spatial polyhedron with fewer sides, while for more complex objects with larger numbers

of components and features, more faces will be needed. In general, frame hierarchy contains

perceptual information about the object, while the spatial polyhedron provides the spatial

and relational information.

In more detail, the object to be identified is first processed visually to obtain 3-D

edges and 2-D regions. These edges are then used to invoke a set of haptic (or touch)

modules which do a further exploration of the object via a fixed set of Exploratory

Procedures (i.e. hand movement strategies), to obtain a final set of features and components

for the explored object.

The exploration is not object model-driven. The Exploratory Procedures are invoked

based upon an initial, tactile, local exploration of the extracted visual features. This visual

data is sparse and highly inaccurate and does not provide enough information. The sensed

object is then matched against the object database using a form of prototype matching.

reasoning is feature based. To determine if an instance is a member of the category, it is

compared to the prototype for that category. It is not necessary for any of the objects in

the category to have all of the defining attn'butes of the prototype. A similarity metric of

some sort is applied to determine whether or not the object belongs to the category. The

object is matched against the modeled prototypes using the extracted components, features,

and their spatial relations. The matching requirements are, that each feature of the

unknown object be present in the instantiated model, that it fit within the bounds of the
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upper and lower limits stored in the model and that the relations between the instantiated

model and the extracted features be the same. Simultaneously, the orientation of the

spatial polyhedron is fixed for each matched model.

All reasoning modules are represented in Prolog. The model reasons from the more

complex hypothesis to the less complex one. Thus it looks first for missing components and

then for non-visible features of present components. For example, the Prolog

implementation of a pot is:

object(one_handled=pot, 50, 300, 80,150, 450, 300, 3,

[body, part],Foody, handte]).

component (one handled=pot, body, 40,250,50,250,250,100,body).

component (onehandled=pot, part, 50,10,10, 200, 20, 20, handle).

face (one_handted =pot,2,

[[body, contour, [rim, curved, 0,[60, 250,60,150]],rim],

[handle, fpart, [large, one_e.xtended],handte]],

side1).

face(one handled=pot,2,

[Foody, surface, [nonelastic, noncompliant, srnootlgplanar,

[border, curveg O,[60,150,60,ISO]]],bottom _rface],

[handlcfpart, [large, one_ext ended], handte ]],

side2).

face (one..handled =po_ 2,

[[body, surface, [nonelastic,noncompliant, srnooth,

curvea,[]],siae surfacel,

[handle, fpart, [smal_ stub by],handle11,
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side3).

f ace (one handted..pot,1,

[[body, surface,[nonelastic, noncompliant,smooth,

curve.d, []],side _surface],

side4).

face (one _.handled ..pot, 2,

[[body, surface, [nonelastic, noncompliant,smooth,

curved,[]],side_surface1,

[handle,fpart, [large, one.extended],handle]],

side5).

face(one..handled pot, 2,

[[body, surface, [nonelastic, noncomptiant,smooth,

curved,Ill, side_surface1,

[handle,fpan,[large,one-extended],handle]],

side6).

The generic world model, overall, allows flexibility. Under different applications,

different features are emphasized. It also allows emphasizing on the function of an object

or a workspace. The system is proven to be fast and robust. Additionally, beyond

parameterizing the model of objects, this representation scheme allows for gross changes

in object geometry and topology. Another advantage of this model is that it tries to follow

human reasoning and recognition, and thus it is simple to conceive. People tend to divide

the world into categories. When humans speak of cups or screwdrivers, they do not have,

most of the times, a specific object in mind; they rather refer to the class of cups or

screwdrivers. Above all, it is less time and space consuming to model the concept of a class
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of objects (screwdriver), than to model each and every imtantiation of the class (every

different screwdriver). However, a priori knowledge and processing is required. The

generic model must preexist for the sensory data to instantiate a specific object.
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2.18 Multiple World Model

The latest trend in world modeling, as Peter K. Allen [3] emphasizes is to combine

many different world models in one global scheme.

model is the use of multiple shape representations.

The main characteristic of this world

Influenced by the tendency of using

multiple sensory means, the basic idea behind a multiple world model is to use the best

suited world representation for each sensory system, and then merge all these independent

models in order to get an overall depiction of the environment.

In his implementation, Peter K. Allen [3] uses tactile sensory systems because of

their ability to recognize attn'butes of three-dimensional objects quickly and accurately.

Among these attributes are global shape, hardness, temperature, weight, size, articulation,

and function. The objective is to identify hand movement strategies which are used by

humans in discovering different attributes of three-dimensional objects. These hand

movement strategies are called Exploratory Procedures (EPs). So far, EPs have reported

success rates, 96-99%, in identifying different object properties using two handed, haptic

exploration.

One major EP is grasping by containment. This exploratory technique derives sparse,

but global, shape information. The recovered shape is represented in superquadratics. The

main reasons for choosing superquadratics for this EP are:

1) The representation is volumetric by nature, which maps directly into the

psychophysical perception processes suggested by grasping by containment.
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2) The models can be constrained by the volumetric constraint implied by the joint

positions on each finger.

3) The representation can be recovered with sparse amounts of point contact data

since only a limited number of parameters need to be recovered. There are five

parameters related to shape, and six related to position and orientation in space.

Global deformations, like tapering and bending, add a few more.

4) In addition to the use of contact points of fingers on a surface, the surface

normals from contacts can be used to describe a dual superquadric, which has the

same analytical properties as the model itself.

5) The recovery process uses a non-linear least-squares estimate of a fit function.

This approach is especially relevant with touch sensing, in which there is evidence

that the human tactile system serves essentially as a low-pass filter.

This Exploratory Procedure obtains a number (typically 30-100) of f'mger contact
,°.

points by encompassing the fingers of the hand around the object. The data is from all the

sides of an object. Using superquaddcs makes the shape estimator effident, stable in the

presence of noise and uncertainty, and able to use sparse, partial data. Thus, a good initial

shape estimate is generated.

Another EP is the lateral extent. This is used to explore a continuous, homogeneous

surface, such as a planar face, and to determine its emends. This EP uses the hand's index

finger. An initial contact with the surface is made, and the Cartesian coordinates of the

contact point are noted. The hand and arm then begin an iterative search for the

boundaries of the surface by performing the following sequence:

1) Lift the finger off the surface until tactile contact is lost;

2) Move the arm in a direction parallel to the surface;
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3) If the finger is in contact after the movement, note the new contact location, else

lower the index finger until it makes contact with the surface again;

4) Repeat steps 1 through 3 until the finger fails to make contact in step 3.

A fa/lure of contact can either be an edge, or a big distance between the surface and

the finger. In the latter case, rechecking has to take place by moving the arm towards the

surface.

Then a second mapping in the opposite direction follows, until an edge is detected.

Finally, a third and fourth mapping takes place, by repeating the same search in both

directions of a track perpendicular to the first two traces.

This procedure is able to map out a set of contact points on the surface, describing

its extend. Each time a fingertip contacts the surface, the Cartesian coordinates of the

contact are retained.

The data extracted from this procedure is mapped into a winged-edge type of Face-Edge-

Vertex model.

Finally, another EP is the contour follower. This exploratory procedure is a dynamic

procedure in which the hand maintains contact with a contour of the object. This EP

reports information that can be used to recover a shape which can be represented as a

class of generalized cylinders. (The class that Peter K. Allen [3] used was surfaces of

revolution). The arm is moved to a location near one end of the explored object. The

thumb and the index finger are opened enough to allow them to encompass the object

without making contact with it. Then, first the thumb, and then the index finger, are slowly

moved toward the object until the sensors detect contact between the finger and the object.

The positions of the two contact locations are noted, and the fingers are retracted from the

object so that no contact exists. The arm and hand are moved a small distance along the
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axis of the explored object and the process is repeated, until the other edge of the object

is reached.

The above EPs can be considered a set of primitive haptic functions to be used as

the building blocks for an active, autonomous haptic recognition system. However, tactile

sensing is not powerful enough, as any other single sensory system, to solely perceive and

recognize the environment.

Using a multiple world model has many advantages. Fist of all, it is the ideal

scheme for multiple sensory system, as each system will be updating the world model which

is most compatible with its structure. Each sensor can act independently and work in

parallel with others. Sensors can share information by non-destructively accessing the other

sensor models. This means more data in greater speeds. Vital information can be

collected, manipulated and double checked by many sensors, producing a more accurate

world model.

However, updating concurrently different models involves the execution of many

complex and time consuming algorithms. Additionally, too much storage is required, and

up to a certain degree there is duplication of information, leading to undesired redundancy.

Furthermore, if a priori knowledge is to be used, all different models have to be updated.
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2.19 Comparison of Different World Models

Most of the different world model representations are designed having a specific

application in mind. Hence, the same criteria that are of major importance for one

situation, might be of lesser significance for another, and vice versa. This variation in the

employed criteria justifies the number and diversity among various world models. Having

always in mind that the choice and development of world models is application specific, the

different world models can be compared according to: Accuracy of representation, Storage

requirements, Speed in updating the scheme, Simplicity of the basic concepts of the model,

ease of Implementation, Expandability, need of a Priori Knowledge, and Application for

which this model is best suited. Using these criteria, the following table compares the

performance of the analytically described world models.
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2.20 Y-Frame World Model Design

Y-Frame Feature Model
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Edge Edge Edge Edge
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Y-Frame Data Structure
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2.21 Implementafion/Acla Programs

obJmain.a

Y-Frame World Model Representatlon

This is the main procedure that calls the procedures that create

and print the contents of the object database.

th OBJECT DATABASE; use OBJECT DATABASE;

th OBJECT_-LISTING; use OBJECT_LISTING;

ocedure OBJECT HANDLING Is

WORKSPACE: WORLD_MODELTYPE;

gin
OBJECT_INFO (WORKSPACE);

SURFACE_INFO (WORKSPACE);
EDGE INFO (WORKSPACE);
CORNER INFO (WORKSPACE)_

PRINT_D-"ATABASE (WORKSPACE);

d;
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Y - Frame World Model Representation

This package enters all the user information to the object database.
This version of the package uses singly linked data strucures.

ckage OBJECT_DATABASE is

type OBJECT LIST TYPE;
type OBJECT-NODEI_ TYPE;

type SURFACE_LISTZTYPE;

type SURFACE MODEL_TYPE;
type EDGE_.LIST_TYPE;
type EDGE MODEL TYPE;
type CORNER LIST TYPE;

type CORNER_MODEL_TYPE;

type OBJECT LIST POINTER is access OBJECT LIST_TYPE;

type OBJECT-MODEL_POINTER is access OBJECT MODEL_TYPE;

type SURFACE LIST POINTER is access SURFACE LIST TYPE;
type SURFACE-MODF_POINTER is access SURFACE MODEL TYPE;

type EDGE_LIST_POINTER is access EDGELISTTYPE; -

type EDGE MODEL POINTER is access EDGE MODEL_TYPE;

type CORN-ER_LIST_POINTER Is access CORNER_LIST_TYPE;

type CORNER_MODELPOINTER is access CORNER_MODEL_TYPE;

The following data structure is used for storing the workspace information

The root of the structure is a node of WORLD MODEL TYPE. This contains

the number of objects that are present in the world and a pointer to a

linked llst of objects.

The linked list of objects is composed of nodes with two elements. One
- element is a pointer to a node containing all the object-related data.

The other element is a pointer to the next object, or in other words to
- the next item in the linked list.

The node containing all the object-related data is of OBJECT MODEL TYPE.
It contains three elements. The first one is the label by which the obJec
is referenced to. The second one is a field holding the number of surface

that compose this object. Finally. the third element is a pointer to a
linked list of the surfaces that compose this object.
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obJects.a

The linked list of surfaces is composed of nodes with two elements. One

element is a pointer to a node containing all the surface-related data.
The other element is a pointer to the next surface, or in other words to
the next item in the linked list.

The node containing all the surface-related data is of SURFACE MODEL TYPE.
It contains four elements. The first one is the label by which the surfac

is referenced to in the workspace. The second one is a field holding the
number of edges that define this surface. The next field is a pointer %o
a l_nked list of the edges that define this surface. Finally, the last
element is a pointer to a linked list of the objects to which this surface
belongs.

The linked list of edges is composed of nodes with two elements. One of
them is a pointer to a node containing all the edge-related data. The
other element is a pointer to the next edge, or in other words to the next
item in the linked list.

The node containing all the edge-related data is of EI_E_MODEL_TYPE. It
contains three elements. The first one is the label by which the surface
is referenced in the workspace. The second element is a pointer to a
linked list of the two corners that define the edge. Finally, the last
element is a pointer to a linked list of the surfaces to which this edge
belongs.

The linked list of corners is composed of nodes with two elements. One of
them is a pointer to a node containing all the corner-related data. The
other element is a pointer to the next corner, or in other words to the
next item in the linked list.

Finally, the node containing all the corner-related data is of CORNER MODE
- TYPE. I% is the leaf node in the data structure, and contains five -

- elements. The first one is the label by which the corner is referenced in

- the workspace. The second, third, and fourth elements are correspondingly
- the x, y, z coordinates of the corner. The fifth element is a pointer to
- a linked list of the edges to which this corner belongs.

Data strucure of the root world node.

type WORLD_MODEL_TYPE is record
NUM OBJECTS : integer;
OBJECT LIST : OBJECT LIST POINTER;

end record;

Data structure of the nodes in the linked list of objects.

type OBJECT LIST_TYPE is record
OBJECT_NODEL : OBJECT_MODEL_POINTER;
OBJECT_LIST_NEXT : OBJECT_LIST_POINTER;

end record;

Data strucure of the object node.
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obJects.a

type OBJECT_MODEL_TYPE is record
LABEL : integer;
NUN SURFACES : integer;

SURFACE_LIST : SURFACELIST_POINTER;
end record;

Data structure of the nodes in the linked list of surfaces.

type SURFACE LIST TYPE is record
-- Q

SURFACE MODEL : SURFACE MODEL POINTER;

_SURFACE-LIST NEXT : SURFACE-LIST POINTER;

end record;

Data structure of the surface node.

type SURFACE_MODEL_TYPE is record
LABEL : integer;

NUN EDGES : integer;

EDGE LIST : EDGE LIST POINTER;

PARENT OBJECTS : OBJECT_LIST_POINTER;

end record;

Data strucure of the nodes in the linked list of edges.

type EDGE LISTTYPE is record
EDGE MODEL : EDGE MODEL POINTER;

EDGE LIST_NEXT : EDGELIST_POINTER;

end record;

Data structure of the edge node.

type EDGE_MODEL_TYPE is record
LABEL : integer;

CORNER LIST : CORNER LIST_POINTER;

PARENT SURFACES : SURFACE_LIST_POINTER;
end record;

Data structure of the nodes in the linked list of corners.

type CORNER LIST_TYPE is record

CORNER NODEL : CORNER_MODELPOINTER;

CORNER-LIST NEXT : CORNER LIST_POINTER;
end record_ -

Data strucure of the leaf corner node.

type CORNER_MODEL_TYPE is record
LABEL : integer;

X, Y, Z : float;

PARENT EDGES : EDGE LIST POINTER;

end record;

procedure OBJECT INFO (WORLD: in out WORLD MODEL_TYPE);
procedure SURFACE INFO (WORLD: in out WORLD_MODEL_TYPE);
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obJects.a

procedure EDGE_INFO (WORLD: in out WORLD MODEL_TYPE);
procedure CORNER INFO (WORLD: in out WORLD_MODEL_TYPE);

I OBJECT_DATABASE;

th TEXT_IO; use TEXT_IO;

th INTEGER_IO; use INTEGER_IO;
th FLOAT_IO; use FLOAT_IO;

tckage body OBJECT_DATABASE is

CORNER

EDGE

SURFACE

OBJECT

: CORNER MODEL_POINTER;
: EDGE MODEL POINTER;

: OBJECTMODEL_POINTER;

TEP_CORNER_LIST_POINTERI,
TMP CORNER LIST POINTER2
TMP-EDGE LIST POINTER1,

TMP EDGE LIST POINTER2

 ' --SURrACE"LISTPOINTER2
TMP--OBJECT...LIST__POINTER

: CORNER_LIST_POINTER;

: EDGELIST_POINTER;

: SURFACE LIST POINTER;

: OBJECTLIST_POINTER;

DATA OUT : file_type;

rocedure OBJECT_INFO (WORLD: in out WORLD_MODEL_TYPE) is

TEMP LABEL : integer;

CURRENT_POINTER, PREVIOUSPOINTER : SURFACELISTPOINTER;

egtn
create (DATA OUT, out_file, "obJ_tnput_to_output.dat") ;

-- Updating the root world node accessed by the variable WORLD

put ("How many objects are in the workspace? ");
get (WORLD.NUM OEJECTS) ;
put (DATA OUT, WORLD.NUM_OBJECTS) ;
new llne (DATA OUT) ;

WOI_D.OBJECT LIST :" new OBJECT_LIST TYPE;

-- Updating the first (and only) node in the linked list of objects

TNP OBJECT_LIST POINTER := WORLD.OBJECT_LIST;
TMP OBJECT LIST-POINTER.OBJECT_MODEL := new OBJECT MODEL_TYPE;

TMP>BJECT>IST_-POINTER.OBJECTLIST_NEXT := NULL;
./
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obJects.a

-- Updating the object node for the first (and only) object
OBJECT :- TMP OBJECT LIST POINTER.OBJECT MODEL;

put ("How is the object labeled? ");
get (OBJECT.LABEL);
put (DATA_OUT, OBJECT.LABEL);
new_line (DATA OUT);
put ("How many surfaces does this object have? ");

get (OBJECT.NUM SURFACES);

_put (DATA OUT, OBJECT.NUM_SURFACES);

new line (DATA_OUT);
OBJECT.SURFACE LIST := null;

-- Creating the linked llst of surfaces for the referenced object
PREVIOUS POINTER :- null;

TMPSURFACE LIST POINTER2 := OBJECT.SURFACE_LIST;
for i in I._OBJECT.NUM SURFACES loop

put ("How is this surface labeled? ");

get (TEMP LABEL);

put (DATA_OUT, TEMP_LABEL);

new llne (DATA OUT);
-- thls is the first surface in the linked list of surfaces for

-- the referenced object
if OBJECT.SURFACE LIST = null then

OBJECT.SURFACE LIST := new SURFACE LIST TYPE;

CURRENT POINTER := OBJECT.SURFACE LIST;-

-- this object has at least another surface already stored in its
-- linked llst of surfaces

else

CURRENT_POINTER.SURFACE_LISTNEXT :- new SURFACE_LISTTYPE;
CURRENT_POINTER := CURRENT_POINTER.SURFACE_LIST_NEXT;

end if;

CURRENT POINTER.SURFACE HODEL := new SURFACE MODEL_TYPE;
SURFACE := CURRENT POINTER.SURFACE MODEL;

SURFACE. LABEL := TEMP LABEL;
SURFACE.EDGE LIST := null;

SURFACE.PARENT OBJECTS :- new OBJECT LIST_TYPE;
SURFACE.PARENT OBJECTS.OBJECT MODEL :- OBJECT;

SURFACE.PARENT OBJECTS.OBJECT LISTNEXT := null;
CURRENT POINTER.SURFACE LIST_NEXT :- null;

if PREVIOUS POINTER /= null then

PREVIOUS POINTER.SURFACE_LIST_NEXT :- CURRENT_POINTER;
end if;

PREVIOUS_POINTER := CURRENT_POINTER;

end loop;

_nd OB/ECT_INFO;
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ocedure SURFACE_INFO (WORLD: in out WORLD_MODEL_TYPE) is

TEMP LABEL : integer;
FOUND : boolean;

THP_SURFACE : SURFACE_MODELPOINTER;

CURRENT_POINTER, PREVIOUS_POINTER : EDGE_LIST_POINTER;

egin

_put ("Start entering surface information");

new llne;

-- Updating the surface nodes of the referenced surfaces

for i in I..OBJECT.NUIq_SURFACES loop

put ("Which surface are you referring at? ");

get (TEMP LABEL);

put (DATA_OUT, TEMP_LABEL);

newllne (DATA OUT);

-- Checking if the user typed the correct surface label, in other
-- words checking if a surface node for the referenced surface
-- already exists
TMP SURFACE LIST POINTER2 :l OBJECT.SURFACE LIST;
SURFACE :l TMP SURFACE LIST POINTER2.SURFACEMODEL;
while (SURFACE.LABEL /- TEMP LABEL) and

(TMP SURFACE LIST POINTER2 /= null) loop
s -acK LIST POI TERZ :-

-- TMP SURFACE LIST POINTER2.SURFACE_LIST_NEXT;

if TMP_SURFACELIST_POINTER2 /s null then
SURFACE :_ TMP_SURFACELISTPOINTER2.SURFACENODEL;

end if;

end loop;
-- SURFACE is now pointing %o the referenced surface
if TMP SURFACE LIST POINTER2 m null then

put (" ERROR IN LABELING ");
-- Once the surface is located and accessed through variable
-- SURFACE, its updating proceeds.
else

put ("How many edges does this surface have? ");

get (SURFACE.NUM_EDGES);

put (DATA_OUT, SURFACE.NUM_EDGES);

newllne (DATA_OUT);
SURFACE.EDGE LIST :- null;

PREVIOUS_POINTER :- null;

-- Creating the linked list of edges for the referenced surface
TMP EDGE LIST POINTER2 := SURFACE.EDGE LIST;

for k in 1..SURFACE.NUM EDGES loop
put ("How are these edges labeled? ");

get (TEMP_LABEL) ;
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put (DATA_OUT, TEMP LABEL);
new llne (DATA_OUT)7

-- Checking if this edge is already referenced, and thus an

-- edge node already exists for that edge

FOUND := false;
TMP SURFACE LIST POINTERI :=

WORLD.OBJECT LIST.OBJECT MODEL.SURFACE LIST;

while (TMP_SURFACE LIST POINTERI/=nuII) and (not-FOUND) |oop
TMP SURFACE :- TMP SURFACE LIST POINTERI.SURFACE MODEL;

TMP-EDGE LIST POINTERI := TMP SURFACE.EDGE LIST;-

whi_e (T_IP_EDGE_LIST_POINTERI-/= null) and-(not FOUND) loop

EDGE :- TMP EDGE LIST POINTERI.EDGE MODEL;
if EDGE.LABEL = TEMP LABEL then

FOUND := true;

-- EDGE points to the already existing edge node
else

TMP EDGE LIST POINTERI:_

- TMP_EDGE_LISTPOINTERI.EDGE_LIST_NEXT;

end if;

end loop;
TMP SURFACE LIST POINTERI :=

- TMP SURFACE LIST POINTERI.SURFACE LIST NEXT;

end loop;

-- thls is the first edge in the linked llst of edges for
-- the referenced surface

if SURFACE.EDGE LIST - null then

SURFACE.EI)GE LIST :- new EDGE LIST TYPE;

CURRENT POINTER :m SURFACE.EDGELIST;
-- thls surface has at least another edge already stored in its

-- linked llst of edges
else

CURRENT POINTER.EDGE LIST NEXT :m new EDGE LISTTYPE;

CURRENT POINTER :- CURRENT POINTER.EDGE_LIST_NEXT;
end if;
-- If the edge is one for which no edge node already exists

-- a new edge node is created and labeled
if TMP EDGE LIST POINTER1 m null then

CURRENT_POINTER.EDGE_MODEL :n new EDGE_MODEL_TYPE;
EDGE :n CURRENT_POINTER.EDGE_MODEL;
EDGE.CORNER LIST :- null;
EDGE.PARENT SURFACES :n new SURFACE LIST TYPE;

EDGE.PARENT_SURFACES.SURFACE_MODEL :m SURFACE;
EDGE.PARENT_SURFACES.SURFACE_LIST_NEXT :- null;
ElSE.LABEL := TEMP LABEL;

-- Otherwise, if an edge node is already created, the edge
-- pointer in the current node of the linked list of edges
-- for the referenced surface is redirected to the specific
-- edge node, and the parent list of that edge node is updated
else

CURRENT POINTER.EDGE_MODEL :- EDGE;
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TMP SURFACE LIST POINTERI := EDGE.PARENT SURFACES;
white TMP S_RFACE LIST POINTERI.SURFACE LIST NEXT

/= null loop
TMP SURFACE LIST POINTER1 :=

TMP SURFACE LIST POINTERI.SURFACE LIST NEXT;

end loop;
TMP SURFACE LIST POINTER1.SURFACE LIST NEXT :=

new SURFACE LIST TYPE;
TMP SURFACE LIST POINTERI :=

-TMP_SURFACE_LIST_POINTERI.SURFACE_LIST_NEXT;

TMP SURFACE LIST POINTERI.SURFACE MODEL := SURFACE;

TMP SURFACE LIST POINTERI.SURFACE LIST NEXT := null;

end if;

CURRENT POINTER.EDGE LIST NEXT := null;

if PREVIOUS_POINTER /= null then

PREVIOUS_POINTER.EDGE_LIST_NEXT := CURRENT_POINTER;
end if;

PREVIOUS POINTER := CURRENT ru_i,,_,,

end loop;
end if;

end loop;

nd SURFACE_INFO;

rocedure EDGE_INFO (WORLD: in out WORLD MODEL_TYPE) is

TEMP LABEL : integer;
FOUND : boolean;

MORE EDGES : character;

TMP_SURFACE : SURFACE NODEL_POINTER;
TMP EDGE : EDGE MODEL r_ .... ,,

CURRENT_POINTER, PREVIOUS_POINTER : CORNER_LISTPOINTER;

pegin
put ("Start entering the edge information ");
new line;

MORE EDGES :w 'y';

-- Updating the edge nodes of the referenced edges
while (MORE_EDGES - 'y') or (MORE_EDGES = 'Y') loop

put ("Which edge are you referring at? ");

get (TEMP_LABEL);

put (DATA_OUT, TEMP_LABEL);

new_line (DATA OUT);

-- Checking if the user typed the correct edge label, in other

-- words checking if an edge node for the referenced edge already
-- exists

83



obJects.a

FOUND :- false;

TMP SURFACE LIST POINTER2 :=

WORLD.OBJECT LIST.OBJECTMODEL.SURFACELIST;

while (TMP_SURFACE_LIST_POINTER2 /- null) and (not FOUND) loop

SURFACE :- TMP_SURFACELIST_POINTER2.SURFACE_MODEL;
TMP_EDGE_LIST_POINTER2 :- SURFACE.EDGELIST;

while (TMP_EDGE LIST_POINTER2 /- null) and (not FOUND) loop

EDGE := TMP_EDGELIST_POINTER2.EDGE_NODEL;
if EDGE.LABEL - TEMP LABEL then

FOUND := true;

-- EDGE is pointing to the referenced edge node
else

TMP EDGE LIST POINTER2 :=

TMP_EDGE LIST_POINTER2.EDGE LIST NEXT;
end if;

end loop_

if (not POUND) %hen
TMP SURFACE LIST POINTER2 :=

TMP_SURFACELISTPOINTER2.SURFACE_LISTNEXT;
end if;

end loop;

if TMP EDGE LIST POINTER2 = null then
put LABELING ");

-- the referenced edge node is located, accessed through the vartabl
-- EDGE, and its updating proceeds
else

PREVIOUS POINTER :l nul I ;

-- Creating the linked list of corners for the referenced edge
TMP_CORNERLIST_POINTER2 :i EDGE.CORNERLIST;
for i in I..2 loop

put ("How are the corners defining the edge labeled? ");

get (TEMP_LABEL) ;

put (DATA_OUT, TEMP LABEL) ;

new_llne (DATA OUT);

-- Checking if the corner is already referenced and thus

-- a corner node already exists for that corner
FOUND :m false;
TMP SURFACE LIST POINTERI :_

WORLD. OBJECT_L IST .OBJECT_MODEL. SURFACE_L IST;
TMP EDGE LIST POINTERI :-

TMP SURFACE LIST POINTERI.SURFACE MODEL.EDGE LIST;
while (TMP SURFACE LIST_POINTERI/-nulI) and (not FOUND) loop

while (TMP EDGE_LIST_POINTERI /z null) and (not FOUND) loop

TMP_EDGE :- TMP_EDGE_LIST_POINTERI.EDGE_MODEL;

TMP_CORNER_LI ST_POINTER1 :z TNP_EDGE .CORNER LI ST;
while (TMP_CORNER LIST POINTERI /- null)

and (not FOUND) loop

CORNER :- TMP Cc,-MER LIST POINTERI.CORNER_MODEL;

if CORNE_._,_ TEMP_LABEL then
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FOUND :I true;

-- CORNER points to the already existing corner
-- node of the referenced corner

else
TMP CORNER LIST POINTER1:=

TMP_CORNER_LISTPOINTERI.CORNER_LIST_NEXT;

end if;

end loop;
If (not FOUND) then

TMP EDGE LIST POINTERI: I

TMP EDGE LIST POINTERI.EDGE LIST NEXT;

end if;

end loop;

if (not FOUND) then

TMP SURFACE LIST POINTERI :1

TMP SURFACE LIST POINTERI.SURFACE LIST NEXT;
if TMP S-URFACE LIST P-OINTER1 /= null Then

SURFAC :1 -
TMP SURFACE LIST POINTERI.SURFACE MODEL;

TMP EDGE LIST POINTERI := TMP SURFACE.EDGE LIST;

end if;

end if;

end loop;
-- this is the first corner in the linked list of corners for

-- the referenced edge
If EDGE.CORNER LIST - null then

EDGE.CORNER LIST :- new CORNER_LIST_TYPE;
CURRENT POINTER :- EDGE.CORNER LIST;

-- this edge has its first corner-already stored in its linked
-- list of corners
else

CURRENT POINTER.CORNER LIST NEXT := new CORNER LIST_TYPE;
CURRENT POINTER :s CURRENT POINTER.CORNER LIST NEXT;

end if;
-- If the corner is one for which no corner node already exists
-- a new corner node is created and labeled

if TMP EDGE LIST POINTER1 = null then
CURRENT POINT-'ER.CORNER MODEL :- new CORNER MODEL TYPE;
CORNER 7- CURRENT POINTER.CORNER MODEL; - -
CORNER.PARENT EDGES :- new EDGE LIST TYPE:

CORNER.PARENTZm ES.EDGZ_.ODEL 7-
CORNER.PARENT EDGES.EDGE LIST NEXT :- null;

CORNEa.L EL 7- LaBeL; -
-- Otherwise, if a corner node is already created, the corner

-- pointer in the current node In the linked list of corners

-- for the referenced edge is redirected to the specific corner

-- node, and the parent list of that corner node is updated
else

CURRENT POINTER.CORNER MODEL := CORNER;
TMP_EDGE LIST FOINTER1-: - CORNER. PARENT_EDGES;
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while TMP_EDGE_LIST_POINTERI.EDGE_LIST_NEXT
/- null loop

TMP EDGE LIST POINTERI :=

TMP_EDGELIST_POINTERI.EDGE_LIST_NEXT;

end loop;
TMP EDGE LIST POINTER1.EDGE LIST NEXT :=

new EDGE LIST TYPE;
TMP EDGE LIST POINTERI :=

TMP EDGE LIST POINTERI.EDGE LIST_NEXT;
TMP EDGE LIST POINTERI.EDGE MODEL := EDGE;

TMP EDGE LIST POINTERI.EDGE LIST NEXT := null;

end if;

CURRENT POINTER.CORNER LIST NEXT := null;

if PREVIOUS_POINTER /_ nul_ then

PREVIOUS POINTER.CORNER LIST NEXT := CURRENT POINTER;

end if;

PREVIOUS_POINTER := CURRENT_POINTER;

end loop;
end if;

put ("Are there more edges to be processed? (y/n) ");
get (MORE_EDGES);

put (DATA_OUT, MORE EDGES);

new_line (DATA_OUT);

end loop;

_d EDGE INFO;

rocedure CORNER_INFO (WORLD: in out WORLD_MODEL_TYPE) is

TEMP LABEL : integer;
FOUND : boolean;

MORE CORNERS : character;

TMP_SURFACE : SURFACE MODEL_POINTER;
TMP EDGE : EDGE MODEL POINTER;

 _-co ER :COW.CO,EL_POINTER;

egin
put ("Start entering the corner information ");
new line;

MORE_CORNERS := 'y';

-- Updating the corner nodes of the referenced corners
while (MORE_CORNERS - 'y') or (MORE_CORNERS - 'Y') loop

put ("Which corner are you referring at? ");

get (TEMP_LABEL);

put (DATA OUT, TEMP_LABEL);

newline (DATA_OUT);

-- Checking if %he user typed the correct corner label, in other
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-- words checking if a corner node for the referenced corner
-- already exists
FOUND :- false;
TMP SURFACE LIST POINTER2 :=

WORLD.OBJECT LIST.OBJECT_MODEL.SURFACE_LIST;
while (TMP SURFACE LIST POINTER2 /= null) and (not FOUND) loop

SURFACE-:= TMP SURFACE LIST POINTER2.SURFACE MODEL;
TMP EDGE LIST POINTER2-:- S_TRFACE.EDGE LiST;-

whiTe (TMP_EDGE LIST POINTER2 /- null_ and (not FOUND) loop
EDGE :- TMP EDGE LIST POINTER2.EDGE MODEL;

TMP CORNER LIST POINTE-R2 := EDGE.CORNER LIST;

while (TMP CORNER LIST POINTER2 /= null)
and (not FOUND) loop

CORNER := TMP CORNER LIST POINTER2.CORNER_MODEL;
if CORNER.LABEL = TEMP LABEL then

POUND := true;.
-- CORNER is now pointing to the corner node of
-- referenced corner

else
TMP CORNER LIST POINTER2 :=

TMP_CORNERLISTPOINTER2.CORNER_LIST_NEXT;
end if;

end loop;

if (not FOUND) then
TMP EDGE LIST POINTER2 :=

TMP EDGE LIST POINTER2.EDGE LIST NEXT;

end loop;
if (not POUND) then

TMP SURFACE LIST POINTER2 :=

-- TMPS_rRFACE..LIST_POINTER2.SURFACE_.LIST_.NEXT;
end if;

end loop:

if TMP CORNER LIST POINTER2 = null then

put Y" IN  ELING ");
-- The corner node for the referenced cor._ ......... _

-- through the variable CORNER. and its updating proceeds
else

put
get
put
put
get

("What is the X coordinate of this corner? ");
(CORNER.X);

(DATA_OUT, CORNER.X);
("What is the Y coordinate of this corner? ");

put (DATA OUT, CORNER.Y);

new line (DATA OUT);
put-("What is the Z coordinate of this corner? ");

get (CORNER.Z);
put (DATA_OUT, CORNER.Z);

new line (DATA OUT);
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end if;
put ("Are there more corners %o be processed? (y/n) ");

get(MORE_CORNERS);
put (DATA_OUT, MORE_CORNERS);

new llne (DATA_OUT);

end loop;

close (DATA_OUT);

d CORNER_INFO;

ld OBJECT_DATABASE;
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Y-Frame World Model Representation

- This package contains the procedures that perform a Depth First Traversal
- in the object database.

Ith OBJECT DATABASE; use OBJECT_DATABASE;

ith TEXT I0; use TEXT I0;

ith INTEGER_IO; use INTEGER_IO;

Ith FLOAT IO; use FLOAT_IO;

ackage OBJECT LISTING is

procedure PRINT_DATABASE (WORLD: in out WORLD_MODEL_TYPE);

nd OBJECT_LISTING;

ackage body OBJECT_LISTING is

CORNER

EDGE
SURFACE

OBJECT

: CORNER_MODELPOINTER;

: EDGE MODEL_POINTER;

: SURFACE_MODEL_POINTER;

: OBJECTMODEL_POINTER;

TMP CORNER LIST POINTERI,
TMP CORNER LIST POINTER2

TMP=EDGE LIST POI NTER1,
TMP EDGE LIST POINTER2
TMP SURFACE LIST POINTER1,
TMP SURFACE LIST POINTER2

TMP_OBJECTLISTPOINTER

: CORNER_LIST_POINTER;

: ZD E_LIST3OINTER;

: SURFACE LIST_POINTER;

: OBJECTLIST_POINTER;

rocedure PRINTDATABASE (WORLD: in out WORLD_MODEL_TYPE) is

egin
new line;
put (" The world model is composed of ");

put (WORLD.NUM_OBJECTS);

put (" objects.");

new line;
TMP OBJECT LIST POINTER :l WORLD.OBJECT LIST;
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-- Loop going through every object in the world
while TMP OBJECT LIST POINTER /= null loop

OBJECT :z _ OBJECTLIST_POINTER.OBJECT_MODEL;

put ("Object Nr ");
put (OBJECT.LABEL);
put (" has the following characteristics..");

new line;

put (" The object is composed of ");

put (OBJECT.NUMSURFACES);

put (" surfaces.");
new line;

TMP SURFACE LIST POINTER2 :- OBJECT.SURFACE LIST;

-- Loop going through every surface in the current object

while TMP SURFACE LIST POINTER2 /= null loop
new Tine; - -

SURFACE := TMP SURFACE LIST POINTER2.SURFACE_MODEL;

put (" Surface Nr ");

put (SURFACE.LABEL);

put (" has the following characteristics..");
new line;

put (" This surface is composed of ");

put (SURFACE.NUM_EDGES);

put (" edges.");
new line;
TMP-EDGE LIST POINTER2 :t SURFACE.EDGE LIST;

-- Loop golng-through every edge in the current surface

while TMP_EDGE_LIST POINTER2 /t null loop

new line;
EDGE :_ TMP EDGE LIST POINTER2.EDGE MODEL;
put (" - Edge Nr "); -

put (EDGE.LABEL);

-- put (" has the following characteristics..");
new line;

TMP CORNER LIST POINTER2 := EDGE.CORNER_LIST;
-- Loop going through every corner in the current edge

while TMP_CORNERLIST_POINTER2 /- null loop
new line;
CORNER := TMP CORNER LIST POINTER2.CORNER MODEL;
put (" Corner Nr ");

put (CORNER.LABEL);
new_line;
put ("
put (CORNER.X);

new line;
put ("

put (CORNER.Y);
new_line;
put ("

X coordinate - ") ;

Y coordinate = ");

Z coordinate - ");
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!

end loop;

put (CORNER.Z);
new line;
TMPCORNER_LIST_POINTER2 :=

TMP_CORNER_LIST_POINTER2.CORNER_LIST_NEXT;
end loop;

TMP EDGE. LIST POINTER2 :B
- TM_EDGE_LIST_POINTER2.EDGE_LIST_NEXT_

end loop;

TMP_SURFACE_LIST_POINTER2 :B
TMP_SURFACE_LIST. POINTER2.SURFACE_LIST_NEXT;

end loop;

TMP OBJECT_LIST_POINTER :_ TMP_OBJECT. LISTPOINTER.OBJECT_LIST_NEXT;

nd PRINT_DATABASE;

nd OBJECTLISTING;
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3. WORLD MODEL AND SENSORY PROCESSING MODEL INTERFACE

Using the hierarchical feature based representation, the interface between the

World Model and the Sensory Processing Model was designed. It is implemented for

the Servo and Primitive levels of the hierarchy. The design was structured in such a

way that it can be generalized to the higher levels.

_
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_he interface between world modeling ---> sensory processing */

_ct io mld2 {

unsigned int time;

int instance; /* name of object */

int partname;

int num feat; /* num of corners */

double TO_W; /* object to world matrix */

double *C W; /* camera to world */

double *C-O: /* camera to object */

double in_t view[3]; /* initial view of object */

struct vertex *vertices;/* vertices of model */

struct feature *corn; /* corners of object in the image */

struct io mld2 *next; /* link to next object */

world modeling contains object lists and spatial volum matrix

representation of the world */

/* structure storing the contents of the world */

:ruct worldcontents {

int num inst; /* number of instances in the world */

struct object *pobj; /* pointer to object lists */

struct octnode *world__map; /* pointer to spatial representation of
the world */
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3tructures for blobs and corners *

************************************

uct objects {

double area; /* the area of the component */

double xcntr, ycnt, /* the centroid of the object */

zcnt;

double m20, mll; /* object moments */

double mml0, mm01, mm20, mm02, mmll, mm21, mml2, mm03, mm30 ;

float perim; /* index to length of boundary (not including holes)

struct feature *equation; /* index of structure containing surface equation

int holes; /* number of holes */

struct objects *olinks[2]; /* links to other objects */

struct objects *future;

struct objects *past;

int *odescription;

int ox3d;

int oy3d;

int oz3d;

int oyaw;

int opitch;

int oroll;

/* link to next frame */

/* link to previous frame */

/* further information about the object */

/* 3d position: x, y, z */

/* (or a vector pointing to centroid, if */

/* the 3d information is not known) */

/* 3d position: yaw, pitch, roll (degrees) */

struct edgcoords *st list; /* start address of edge list */

struct feature *s_corn, *e_corn; /* start and end pointers for corners */

int color; /* object or hole */

int xmin, xmax, ymin, ymax, /* bounding rectangle */

zmin, zmax;

struct objects *h_area, *l_area; /* links to next largest and next smalle_

int otype; /* object type or number */

int oname; /* name from model database */

int oconfidence; /* is this really the right object? */

int fingered; /* set to one if a feature on this object */

/* matched with an expected feature */

structure for features in database *

****************************************

.truct feature {

double surfeqn[4];

int fx3d;

int fy3d;

int fz3d;

int fyaw;

int fpitch;

int froll;

struct feature *flinks[2];

char *fdescription;

/* surface equation if feature is a surface */

/* 3d position: x, y, z, yaw, pitch, roll */

/* (or a vector pointing to centroid, if */

/* the 3d information is not known) */

/* 3d position: yaw, pitch, roll (degrees) */

/* links to other features */

/* Note that the corners are linked through

/* flinks[0] is anti-clockwise, flinks[l] is

/* further information about the feature */

.nt fedgenum; /* number of edge points if edge feature */

int ftype; /* feature type or number */

int fname; /* name from model database */

struct frame *fframe; /* pointer to header structure for picture */

int fconfidence; /* is this really the right feature? */

};

99



structure for table entries used in mldi (dynamically allocated) *

the data will be used in table maintainer
*

********************************************************************

uct featentry {

int feattype;

int numfeats;

struct feature *featlist;

struct featentry *nextcol;

};

ruct tablentry {

int instname;

int genericobj;
double *0 W;

int obj_confidence;

struct featentry *entry;

struct tablentry *nextrow;

};

/* a column in the table */

/* type of feature described */

/* number in list */

/* pointer to list of features */

/* the next column */

/* a row in the table */

/* instance identifier */

/* genericobj num. */

/* object to world matrix */

/* list of "table columns" */

/* the next row in the Table */

structures for edges *

**************************

truct edgcoords {

int x;

int y;

};

/* structure for edges in mldi */

truct edges {

int l_link, x_coord, y_coord, r_link;

***********************************************

structure for frame-dependent information *
*

truct frame {

unsigned int ferrorstat; /* system errors */

unsigned int ftod; /* time of day when picture was taken */

unsigned int fsequence; /* sequence number for picture */

unsigned int fpictype; /* the picture that was requested */

unsigned int fnumnodes; /* number of data entries found */

char *ffirstnode; /* pointer to first node */

unsigned int fnummatches;/* number of matches with expectations */

unsigned int fnumedges; /* number of edges */

unsigned int ftabentries; /* number of table entries */

};

*************************

Chebyshev structure *
*
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:uct cheby {

int firstx;

int lastx;

int cymin;

int cymax;

double coeffa;

double coeffb;

double coeffc;

double coeffbb;

double coeffcc;

double cerror;

unsigned int *cequation;

int ctype;

int cname;

unsigned int cnumfeats;

/* The Chebyshev coefficients, errors, and line endpoints */

/* image coordinate start and end points of segm_

/* min y for bounding rectangle */

/* max y for bounding rectangle */

/* coefficients of polynomial */

/* origin is at firstx */

/* (alternate coefficients) */

/* origin at midpoint of curve */

/* fitting error */

/* equation of surface */

/* object type or number */

/* name from model data base */

/* number of features */

struct feature *chebfeats; /* corners of segment */

struct cheby *nextcheb; /* next structure of this type */

struct frame *cpicture; /* pointer to frame info */

int touched; /* flag for unpredicted blobs */

};

*struct flgstruct {

unsigned char fstatus;

unsigned char fprevuser;

);

*/
*/
*/

/* previous user and open flag */
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4. LOCAL LINEAR FEATURE EXTRACTION FROM LASER RANGE DATA

In order to construct the hierarchical representation of an object in the world

model, labeled linear features must be obtained from depth data. The depth data

obtained from the laser range sensor are not evenly spaced when mapped into the

Cartesian Coordinate. Most of the existing vision algorithm, including the linear

feature detectors, cannot be used because they generally assume equal distance existed

between neighboring sampled points. An algorithm to convert range data from the

laser range sensor to evenly spaced Cartesian Coordinate depth data was designed and

implemented. This would allow the local linear feature detectors to be more accurate

and effective. Three local linear feature detection algorithms were implemented and

tested on the range image taken from the range sensor. This section describes the

scheme, the algorithms, and includes the C programs for linear feature extraction.

4.1. The scheme

In our implementation, the linear feature extractions scheme contains the follow-

ing steps :

1

3

4

Map range data into evenly space grid points.

Apply local edge operators to detect depth changes that correspond to object

boundaries in the 3-D world.

Apply non-maxima suppression to produce eight-connected edges that are

one pixel wide.

Find connected components in the thinned edge data.
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4.2 Range data mapping algorithm

The depth data obtained from the laser range sensor arc in scattered 3-D (x,y,z)

form. Most of the existing vision algorithm, including the linear feature detectors, can-

not be used because they generally assume equal distance existed between neighboring

sampled points (i.e. in raster form). The algorithm to convert range data from the

laser range sensor to evenly spaced Cartesian Coordinate depth data is broken down

into the following steps :

1 Find the minimum and maximum x and y values. In practices (max x -

rain x) has almost the same value as (max y - min y).

2 Construct a 64 By 64 grid based on minimum and maximum values of x and

y.

3 Map each range point into the grid point closest to its x, y values.

4 Evaluate each point in the grid by averaging all range values mapped to

the grid poinL

5 Propagate the range value to neighbors with no range values mapped to it.

4.3 Local edge detectors

An edge in a depth image corresponds to a depth discontinuity in the object or

scene. The primary reason for using edges is to reduce of information to be pro-

cessed while preserving spatial information. There are a large variety of edge detection

algorithms in the literature, see [Dav75][Abd79][Bli84] for surveys. We implemented

two local 2D edge detectors to be applied to the mapped range data obtained in step 2.

The Sobel edge detector was chosen because it is one of the edge detectors most corn-
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monly used by researchersin robot vision. The Canny operator[CanS6] was chosen

for its robustness. In addition, they are faster and simpler than other detectors that can

provide the same desired combination of good detection, good localization and good

response to a single edge.

We have also designed and implemented a 3-D range algorithm m detect edges.

The concepts and formula used in the design arc listed below :

1 Boundary edges : An edge is called a boundary edge if any of its eight

neighbors' data is not available (e.g. exceeds a sensor's maximum range).

2 Discontinuous edge : a discontinuous edge exists when the value of depth

changes abruptly in the neighborhood. In our implen'_ntation, eight-

neighbors were used.

D(ij;0) = r(i+l, j) - Kid); (represent right direction]

D2 (ij) = max (D(i, j; k * I_4) ; k = 0, 1, 2, ..., 7}

3

First, D2(i,j) is calculated for every point in a range image. In the second

pass, all the point (i,j) such that D2 (i,j) is above a threshold value is deter-

mined as a discontinuous edge.

Corner edge : A corner edge is defined when two different surfaces meet. A

typical detection method is to compute the difference of the surface orienta-

tions in neighbors.

n (i,j) = ( ar (i,j) / a x, _(i,j) / _, -1)

a r(i,j) = ( r (i+k,j) - r(i-k, j)) / 2k)

r( ij)/a y = ( r (i, j+k) - r(i, j-k)) / 2k
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where k is a parameter, 0 < k < 3

cos a(i,j) = (n (i+k,j). n(i-k, j)) / ( In (i+kj) I * I n(i-k, j) 1) ;

cos J_(i,j) = (n (i, j+k). n(i, j-k)) / ( [n (i,j +k) I * In(i, j-k) I)

DD2 (ij) = max (a(i,j), lS(i,,j))

Similar to discontinuous edge detection, first DD2(ij) for each point (id) is computed.

Then every point (id) such that DD(i,j) is above a threshold value is declared as a

comer edge.

Figure I-3. Show edge images after applying Sobel, Canny, and 3-D edge detectors

respectively.
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Figure 1. Edge image after applying Sobel edge detector.
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Figure 2. Edge image after applying Canny edge detector.

May21 1991 14:58:32

1

2

3

4

5

6
7

8

9

I0

11

12

13

14

15
16

17

18

19
20

21

22

23

24

25
26

27

28
29

30

31

32

33

34

35

36
37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

canny.edge Page 1

**** ** t*

**** *****_ *t_tttt*** **te*tt*_*

*** ****t_** • tt*_t

ttt_ **_*****t_t t*

t

t*e

tt*

tt*

*t*

tt*

t**

t*t

t _t

t **t

*tt

*tt

107



Figure 3. Edge image after applying 3-D edge detector.
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4.4. Non-maximum suppression for thinning edge data

One of problem in local edge detectors is that they re quite sensitive to noise, and

they usually produce thick edges. In order to localize edge reliably, non-maximum

suppression is applied to the edge images.

Figure 4-6

respectively.

show the results of non-maximum suppression applied to Figure 1-3
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Figure 4. Edgeimageafter thinningFigure 1.
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Figure 5. Edge image after thinning Figure 2.
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4.5 Connected components labeling

The Connected Components (CM) algorithm labels the edge points by making

raster scans of the non-maximum suppressed edge image. Edge points that are con-

nected will have the same label. Hence the points on the same boundary of an object

have the same label.

Figure 7-9 show the labeled connected components for Figures 4-6.
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Figure 7. Labeled connected components of Figure 4.

May 21 1991 15:05:57 sobel.component Page 1

i0

II

12

13

14
15

16

17

18

19
20

21

22

23

24
25

26

27

28
29

3O

31

32

33
34

35

36
37

38

39

40
41

42

43

44

45
46

47

48
49

5O

51

52

53
54

55

56

57

58

59

60
61

62

63

64

4444

D

D
D

D

D

D
D

D

D

D
D

D

444 44444444444 4 444 444444

44444444444444 44 4444 444444 4444 44

= A

= == >>>> >>>>> < < @@

= D >>>> > <<<<

DD >> > <<<<<
DD >> LL >>

DD >> >>>

D >> MMMM >>
D >> MMMMM MMM >>

DD >> MMM MM >
DD >> MM MM >>

D > MM M >>

• MM M >
• MM MM >

• M M >>
> M M •
> PPP M M •
• P P M M >

• PPP M M >
• M M >

>> M M >>
> MM MM >

> MM MM >
> MM MM >>

D • MM MM >

DD >> MM MM >>>
DD >> MMMMMM MMMM >>

DD >> M TTT >>

DD >> T T >>

DD >> _ >>

DDD >>> >> U VVVV
WW D >>> >>> U V

WW WW Y >>>> >>>>>>>>>>> U V [[ \
ww w ] • v [ [ \

www vv [{ \
v v'v

v vvvv-v

999

:5 << <

>>>> < << @ @
>>>>>>>> < < @ @ B

4

4

4

4

4

4

4
4

4

4

4

4

4
4

4

4

4

4
4

4

4

4
4

4

4

4

4
4

4

4
4

4

4
4

4

4

4

4
4

4

4

4
4

4

4

44444 44444 4444444444444444444 4 44444444444
4 444 4 444444444 44444

d

dd
d

114



Figure 8. Labeledconnectedcomponentsof Figure5.
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4.6 Implementations and C programs

Range Mapping C Programs
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#include <stdio.h>

#define ARRAY INITIAL

#define LEVEL (65)

#define LARGEST LENGTH

(0.0)

(4500)

double depth_image[LEVEL] [LEVEL];

main () {

/* this program transforms the scattered data (x,y,z) into z(x,y) */

/* input is surf.dat ; output is depth.dat */

int length=LARGEST_LENGTH/10;

double largest[3], smallest[3], step[3];

double x cor[LARGEST_LENGTH], y_cor[LARGEST_LENGTH], z_cor[LARGEST_LENGTH];

initialization( &length, x_cor, y_cor, z_cor );

analysis( length, largest, smallest, step, x_cor, y_cor, z_cor );

rearrange_data( length, smallest, step, x_cor, y_cor, z_cor );

********************************************************************

int initialization ( int *length, double x_cor[],

double y_cor[], double z_cor[] ) {

int i,j,c;

FILE *ifp;

float temp;

depth image[0] [0]--0;
for (i=l; i < LEVEL; ++i) {

depth_image [0 ] [i ]=i-i ;

depth_image [i ] [0 ]=i-i ;
}
for (i=l; i< LEVEL; ++i)

for (j=l; j< LEVEL; ++j)

depth_image[i] [j] = ARRAY_INITIAL;

ifp=fopen ("surf. dat", "r") ;

for (i=0; i < LARGEST LENGTH; ++i) {

if ( fscanf(ifp,"%f", &temp) != EOF )

x cor[i] = (double)temp;

fscanf(ifp, "%f", &temp),"

y_cor[i] = (double)temp;
fscanf(ifp, "%f", &temp)-

z cor[i] = (double)temp;

}
else {

*length=i;
break;

}

}
fclose(ifp);

*************************************************************************

int analysis ( int length, double largest{],
double smallest [], double step[ ],

double x cor[], double y_cor[], double z_cor[] ) (

int i;

largest[0] = smallest[0] -- x_cor[0];

largest [i] = smallest[l] _ y_cor[0] ; 118



largest [2] - smallest [2] - z_cor[0];

for (i-l; i < length; i++) {

if (x cor[i] < smallest[0])

smallest[0] - (double)x cor[i];

else if (x cor[i] > largest[0])

largest[0] -- (double)x_cor[i] ;

if (y_cor[i] < smallest[l])

smallest[l] = (double)y_cor[i];

else if (y_cor[i] > largest[l])

largest[l] = (double)y_cor[i] ;

if (z cor[i] < smallest[2])

smaYlest[2] = (double)z cor[i];

else if (z cor[i] > largest[2])

largest [5] = (double)z_cor[i];

for (i=0; i < 2; ++i)

step[i] = largest [i] -smallest [i] ;

}

***************************__** *************************************

int rearrange_data(int length, double smallest[], double step[],

double x cot[], double y_cor[], double z_cor[] ) {

int i, j,col,row;

int count [LEVEL] [LEVEL] ;

FILE *ofp;

for (i=0; i< LEVEL; ++i)

for (j--0; j< LEVEL; ++j)

count[i] [j] = 0;

for (i=0; i < length; ++i) {

row = (int) (((LEVEL-l)* x_cor[i]-(LEVEL-I)* smallest [0])/step[0])+l;

col = (int) (((LEVEL-l)* y_cor[i]-(LEVEL-I)* smallest [i]) /step [1] )+l;

count [row] [col] = count [row] [col] + I;

depth_image[row] [col] = depth_image[row] [col] + z_cor[i] ;

}

for (izl; i< LEVEL; ++i)

for (J=l; j< LEVEL; ++j)

if ( count[i] [j] > 1 )

depth_image[i] [j] = depth_image[i] [j] / count[i] [j];

ofp = fopen("depth.dat","w") ;

for (i=0; i<LEVEL; ++i) {

for (j=0; j < LEVEL; ++j)

fprintf(ofp, "%fl ", depth_image[i] [j]) ;

fprintf(ofp, "\n");

}

fclose (ofp) ;

}
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3-D Edge Detector C Programs
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#include <stdio.h>

#define LEVEL (65)
#define ARRAY INITIAL (0.0)

main() {

double depth_image[LEVEL][LEVEL];

int edge_image[LEVEL] [LEVEL];

initialization( edge_image, depth image );

find_jump_edge( edge_image, depth_image );

int initialization( int edge_image[LEVEL] [LEVEL],

double depth_image[LEVEL] [LEVEL] ) {

int i,j;

FILE *ifp;

float temp;

ifp = fopen( "depth.dat", "r" );

for ( i=0; i < LEVEL; i++ )

for ( j=0; j < LEVEL; j++ ) {

fscanf(ifp,"%fl", &temp);

depth_image[i][j] = (double) tempi
}

fclose(ifp);

/* Initialize edge_image[LEVEL] [LEVEL] */
for ( i=l; i < LEVEL; i++ ) {

edge_image[0] [i] = i-l;

edge image[i] [0] = i-l;
)

for ( i=l; i < LEVEL; i++ )

for ( j=l; j < LEVEL; j++ )

edge_image[i][j] = 0;

int find_jump_edge ( int edge_image [LEVEL] [LEVEL],

double depth_image [LEVEL] [LEVEL] ) {

/* find all jump edges points */

int i, j,k,l, jump;

FILE *ofp, *ofp2;

double jump_image [LEVEL] [LEVEL] ;

for ( i = 2; i < (LEVEL-l); i++ )

for ( j = 2; j < (LEVEL-l); j++ ) {

jump = 0;

if ( depth_image[i] [j] != ARRAY INITIAL )

for ( k = i-l; k <= i+l; k++ )

for ( 1 = j-l; 1 <= j+l; I++ )

jump = ( jump ii

if ( jump )

edge_image[i] [j] = 0;

/* current is (i, j) */

(depth_image[k] [1]==ARRAY_INITIAL) );
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/*

)
edge_image[i] [j] - I;*/

/* merge edge_image with depth_image, save the

resulting image as jump.dat */

jump_image[0][0]=0;
for ( i=l; i < LEVEL; i++ ) {

jump_image[0] [i] = i-l;

jump_image[i] [0] = i-l;

}
for ( i=l; i < LEVEL; i++ )

for ( j=l; j < LEVEL; j++ )

jump_image[i] [j] = depth_image[i] [j] * edge_image[i] [j];

ofp = fopen( "jump.dat", "w" );

ofp2 = fopen( "edge2.dat", "w" );

for (i=0; i < LEVEL; i++ ) {

for ( j=0; j < LEVEL; j++ ) {

fprintf( ofp, "%fl ", jump_image[i] [j] );

fprintf( ofp2, "%d ", edge_image[i] [j] ) ;

}
fprintf (ofp, "%\n" );

fprintf ( ofp2, "%\n" );

}

fclose ( ofp );

fclose ( ofp2 );
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#include <stdio.h>

#define DIMENSIONS

#define K 1

#define LEVEL (65)
#define ARRAY INITIAL

#define DIRECTIONS

(3)

(0.0)

(8)

main () {

double depth_image[LEVEL] [LEVEL] ;

int edge_image [LEVEL] [LEVEL] ;

initialization( edge_image, depth_image );

find_discontinuous_edge( edge_image, depth_image );

int initialization( int edge_image[LEVEL] [LEVEL],

double depth_image[LEVEL] [LEVEL] )

int i, j, temp2;

FILE *ifp, *ifp2;

float temp;

ifp = fopen( "depth.dat", "r" );

ifp2 = fopen ( "edge2.dat", "r" );

for ( i--0; i < LEVEL; i++ )

for ( j=0; j < LEVEL; j++ ) {

fscanf(ifp,"%fl", &temp);

depth_image[i] [j] = (double) temp;
fscanf( ifp2, "%d", &temp2 );

edge_image[i] [j] = temp2;
}

fclose ( ifp );

fclose ( ifp2 );

/* find the maximum of the absolute eight numbers */

double maxis ( double d[] ) {

double max = d[0];

int i;

for ( i _ I; i < DIRECTIONS; i++ )

if ( d[i] > max )

max = d[i];

return max;

}
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current position, k is the

direction, k=0: 0; k=l: pi/4;

k=2: pi/2; ...

double diff (int i, int j, int k,

double depth_image [LEVEL] [LEVEL] ) {

double temp;

switch (k) {

case 0: temp = depth_image[i] [j+l] - depth_image[i] [j] ; break

case I: temp = depth_image[i-l] [j+l] - depth_image[i] [j] ; break

case 2: temp = depth_image[i-l] [j] - depth_image[i] [j] ; break,

case 3: temp = depth_image[i-l] [j-l] - depth_image[i] [j] : break,

case 4: temp = depth_image[i] [j-l] - depth_image[i] [j] ; break,

case 5: temp = depth_image[i+l] [j-l] - depth_image[i] [j] ; break,

case 6: temp = depth_image[i+l] [j] - depth image[i] [j] ; break,

case 7: temp = depth_image[i+l] [j+l] - depth__mage[i] [j] ; break

]

if ( temp > 0.0 )

return temp;

else return (-temp);

*/

int find_discontinuous_edge( int edge_image[LEVEL] [LEVEL],

double depth_image[LEVEL] [LEVEL] ) {

/* find all discontinuous edges */

int i, j, k;

double d[DIRECTIONS], temp;

FILE *ofp;

ofp = fopen ( "thresl.dat", "w" ).,

for ( i = 2; i < (LEVEL-2); i++ )

for ( j = 2:9 < (LEVEL-2); j++ ) {

/* current is at (i,j) */

if ((depth_image[i] [j] != ARRAY_INITIAL)

&& (edge_image[i] [j] == 0)) {

for ( k=0; k < DIRECTIONS: k++ )

d[k] = diff( i, j, k, depth_image );

temp = marl8( d );

fprintf ( ofp, "%f\n", temp )"

}
)

fclose ( ofp );
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#include <stdio.h>

#include <math.h>

#define DIMENSIONS

#define K 1

#define LEVEL (65)

#define ARRAY INITIAL

#define DIRECTIONS

(3)

(0.0)

(8)

/* function prototypes */
double cos sita( int, int, double[][] );

double cos-beta( int, int, double[] [] );

double maxTmum2(double, double);

main() {

double depth_image[LEVEL] [LEVEL];

int edge_image[LEVEL] [LEVEL];

initialization( edge_image, depth_image );

find_corner_edge( edge_image, depth_image );

****************************************************************************

int initialization ( int edge_image[LEVEL] [LEVEL],

double depth_image[LEVEL] [LEVEL] ) {

float templ;

FILE *ifp, *ifp2;

int i, j, temp2;

ifp = fopen( "depth.dat", "r" );

ifp2 = fopen( "edge33.dat", "r" );

for ( i=0; i < LEVEL; i++ )

for ( j=0; j < LEVEL; j++ ) {

fscanf(ifp,"%fl", &templ);

depth_image[i] [j] = (double) templ;
fscanf ( ifp2, "%d", &temp2 );

edge_image[i] [j] = temp2;
}

fclose ( ifp );

fclose ( ifp2 );

**************************************** ******************************

find corner_edge( int edge_image[LEVEL] [LEVEL],
-- double depth_image[LEVEL] [LEVEL]) {

/* Find all corner edge points */

FILE * ofp;

double sita, beta, temp;

int i,j;

ofp = fopen ( "thres2.dat", "w" );

for ( i = 2 * K+I; i < (LEVEL-l) - 2 * K; i++ )

for (j = 2 * K+I; j < (LEVEL-l) - 2 * K; j++ ) {
/* current is (i, j) */

if (( depth_image[i] [j] != ARRAY INITIAL )
&& (edge_image[i] [j]==0)) {

sita z cos sita( i, j, depth_image );
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beta I cos beta( i, j, depth_image ):

temp = maximum2 ( sita, beta ) * 180.0 / 3.1415926;

fprintf ( ofp, "%fl\n" , temp );

)
}

fclose ( ofp );

*********************************

int normal vector( int i, int j, double normal[],

double depth_image[LEVEL] [LEVEL] )

normal[0] = ( depth_image[i+K] [j] -depth_image[i-K] [j] ) / (2*K),

normal[l] = (depth_image[i] [j+K]- depth_image[i] [j-K] ) / (2*K);

normal[2] = -I.0;

*********************************

double magnitude ( double n[] ) {

double temp;

temp = n[0] * n[0] + n[l] * n[l] + n[2] * n[2];

return ( temp );

}

double dot__product ( double nl [] , double n2 [] ) {

double temp;

temp = nl[0] * n2[0] + nl[l] * n2[l] + nl[2] * n212] ;

return temp;

}

double cos sita ( int i, int j,

double depth_image[LEVEL] [LEVEL] ) {

double tempi[DIMENSIONS], temp2[DIMENSIONS], ml,m2;

double temp;

double fabs();

normal vector ( i+K, j, templ, depth_image );

normal vector ( i-K, j, temp2, depth_image );

ml = magnitude (templ);

m2 = magnitude (temp2);

if (fabs(ml*m2*10)> 0.00001)

temp = dot_product( templ, temp2 ) / ( ml * m2 );

else

printf("divided by zero\n");

return temp;

********************************

double cos beta( int i, int j,

double depth_image[LEVEL] [LEVEL] ) {

double tempi[DIMENSIONS], temp2[DIMENSIONS], ml,m2;

double temp;

double fabs(); 126



normal vector( i, j+K, templ, depth_image );

normal vector( i, j-K, temp2, depth_image );

ml = magnitude ( templ );

m2 = magnitude ( temp2 );

if (fabs(ml*m2*10)> 0.00001)

temp _ dot_product( templ, temp2 ) / ( ml * m2 );

else

printf("diveded by zero\n");

return temp;

}

double maximum2 ( double x, double y )

double tl, t2;

tl = acos ( x );

t2 = acos ( y );

if ( tl > t2 )

return tl;

else return t2;

{ /* find maxinum of two number */
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#include <stdio.h>

#define DIMENSIONS

#define LEVEL (65)

#define ARRAY INITIAL

#define DIRECTIONS

#define THRESHOLD1

(3)

(0.0)

(8)

(0.380)

main () {

double depth_image [LEVEL] [LEVEL];

int edge_image [LEVEL] [LEVEL] ;

initialization( edge_image, depth_image );

find_discontinuous_edge( edge image, depth_image );

int initialization( int edge_image[LEVEL] [LEVEL],

double depth_image[LEVEL][LEVEL] )

int i, j, temp2;

FILE *ifp, *ifp2;
float temp;

ifp = fopen( "depth.dat", "r" );

ifp2--fopen ( "edge2.dat", "r" );

for ( i=0; i < LEVEL; i++ )

for ( j=0; j < LEVEL; j++ ) {

fscanf(ifp,"%fl", &temp);

depth_image[i] [j] = (double) temp;

fscanf( ifp2, "%d", &temp2 );

edge_image[i] [j] = temp2;
)

fclose ( ifp );

fclose ( ifp2 );

/* find the maximum of eight numbers */
double maxi8 ( double d[] ) {

double max = d[0];

int i;

for ( i = I; i < DIRECTIONS; i++ )

if ( d[i] > max )

max = d[i] ;
return max;

}
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current position, k is the

direction, k=0: 0; k=l: pi/4;

k=2: pi/2; ...

double diff (int i, int j, int k,

double depth_image[LEVEL] [LEVEL] )

double temp;

switch (k) {

case 0: temp = depth_image[i] [j+l] - depth_image[i] [j] ; break;

case i: temp = depth_image[i-l] [j+l] - depth_image[i] [j] ; break;

case 2: temp = depth image[i-l] [j] - depth_image[i] [j] ; break;

case 3: temp = depth_image[i-l] [j-l] - depth_image[i] [j] ; break;

case 4: temp = depth_image[i] [j-l] - depth_image[i] [j] ; break;

case 5: temp = depth_image[i+l] [j-l] - depth_image[i] [j] ; break;

case 6: temp = depth_image[i+l] [j] - depth_image[i] [j] ; break;

case 7: temp = depth_image[i+l] [j+l] - depth_image[i] [j] ; break;

}

if ( temp > 0.0 )

return temp;

else return (-temp);

*/

int find discontinuous_edge( int edge_image[LEVEL] [LEVEL],

-- double depth_image[LEVEL] [LEVEL] ) {

/* find all discontinuous edges */

int i, j, k;

double d[DIRECTIONS], temp;

FILE *ofp, *ofp2;

double discontinuous_image[LEVEL] [LEVEL];

ofp = fopen ( "edge33.dat", "w" );

ofp2 = fopen ( "discon.dat", "w" );

for ( i = 2_ i < (LEVEL-2); i++ )

for ( j = 2; j < (LEVEL-2); j++ )

if ((depth_image[i] [j] != ARRAY INITIAL)

&& (edge__mage[i] [j] == 0))

for ( k=0; k < DIRECTIONS; k++ )

d[k] = diff( i, j, k, depth_image );

temp = maxi8( d );

if ( temp > THRESHOLD1)

edge_image[i] [j] = I;

}

/* current is at (i, j) */

{

/* merge edge_image with depth_image, and
save the result to discon.dat*/

discontinuous_image[0][0]=0;

for (i=l; i < LEVEL; i++) {

discontinuous_image[0] [i]=i-l;

discontinuous_image[i] [0]=i-l;

}
for (i=l; i < LEVEL; i++)

for (j=l; j < LEVEL; j++)

if ( edge_image[i] [j] == 2 )

discontinuous_image[i] [j] = depth_image[i][j] ;

else discontinuous_image[i] [j] = 0.0;

for (i=0; i < LEVEL; i++) {

for (j=0; j < LEVEL; j++) { 129



fprintf ( ofp, "%d ", edge_image[i][j] );

fprintf( ofp2, "%fl ",discontinuous_image[i] [j] );

}

fprintf ( ofp, "%\n" );

fprintf ( ofp2, "%\n" );

}
fclose ( ofp );

fclose ( ofp2 );
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#include <stdio.h>

#include <math.h>

#define DIMENSIONS

#define K 1

#define LEVEL (65)

#define ARRAY INITIAL

#define DIRECTIONS

#define THRESHOLD2

(3)

(0.0)

(8)
(15.0)

/* function prototypes */

double cos sita( int, int, double[] [] );

double cos beta( int, int, double[] [] );

double maximum2(double, double);

main() {

/*this program find the corner edges */

double depth_image[LEVEL] [LEVEL];

int edge_image[LEVEL] [LEVEL];

initialization( edge_image, depth image );

find_corner_edge( edge image, depth_image );

****************************************************************************

int initialization ( int edge image[LEVEL] [LEVEL],

double depth_image[LEVEL] [LEVEL] ) {

float templ;

FILE *ifp, *ifp2;

int i, j, temp2;

ifp = fopen( "depth.dat", "r" );

ifp2 = fopen( "edge33.dat", "r" );

for ( i=0; i < LEVEL; i++ )

for ( j=0; j < LEVEL; j++ ) {

fscanf(ifp,"%fl", &templ) ;

depth_image[i] [j] = (double) templ;

fscanf ( ifp2, "%d", &temp2 );

edge_image[i] [j] = temp2;

}

fclose ( ifp );

fclose ( ifp2 );

**************************************** ******************************

find_corner_edge( int edge_image[LEVEL] [LEVEL],

double depth_image[LEVEL] [LEVEL]) {

/* Find all corner edge points */

FILE * ofp;

double sita, beta, temp;

int i,j;

for ( i = 2 * K+I; i < (LEVEL-l) - 2 * K; i++ )

for (j = 2 * K+I; j < (LEVEL-I) - 2 * K; j++ ) {

/* current is (i,j) */

if (( depth_image[i] [j] != ARRAY INITIAL )

&& (edge- image[i] [j]==0)) { 131



sita _ cos_sita( i, j, depth_image );

beta - cos_beta( i, j, depth_image );
temp = maximum2 ( sita, beta ) * 180.0 / 3.1415926;

if ( temp > THRESHOLD2 )

edge_image[i] [j] = 3;

ofp = fopen( "edge44.dat", "w" );

fprintf ( ofp, "- in\n" );

fprintf ( ofp, "output of jump edge/ corner edge / discontinuous edgesinin" );

for ( i = i; i < LEVEL; i++ ) {

for ( j = I; j < LEVEL; 9++ ){

if ( edge_image[i] [j] <= 0)

fprintf ( ofp, " " );

else fprintf ( ofp, "I" );

}
fprintf ( ofp, "in" );

}

fprintf ( ofp, "

fclose ( ofp );

-in" ) ;

int normal vector( int i, int j, double normal[],

double depth_image[LEVEL] [LEVEL] ) {

normal[0]--( depth_image[i+K] [j]- depth_image[i-K] [j] ) / (2*K).

normal[l] = ( depth_image[i] [j+K] - depth_image[i] [j-K] ) / (2*K) ;
normal [2] = -I.0;

double magnitude ( double n [] ) {

double temp;

temp = n[0] * n[0] + nil] * n[l] + n[2] * n[2];

return ( temp );

}

double dot_product ( double nl [], double n2 [] ) {

double temp;

temp = nl[0] * n2[0] + nl[l] * n2[l] + nl[2] * n212] ;

return temp;

}

********************************

double cos sita ( int i, int j,

double depth_image[LEVEL] [LEVEL] ) {

double tempi[DIMENSIONS], temp2[DIMENSIONS], ml,m2;

double temp;

double fabs();

normal vector ( i+K, j, templ, depth_image );
normal--vector ( i-K, j, temp2, depth_image );

ml = magnitude (templ);

m2 = magnitude (temp2); 132



if (fabs(ml*m2*10)> 0.00001)

temp - dot_product( templ, temp2 ) / ( ml * m2 );
else

printf("divided by zero\n");

return temp;

double cos beta( int i, int j,

double depth_image[LEVEL] [LEVEL] ) {

double tempi[DIMENSIONS], temp2[DIMENSIONS], ml,m2;

double temp;
double fabs();

normal vector( i, j+K, templ, depth_image );

normal vector( i, j-K, temp2, depth_image );

ml = magnitude ( templ );

m2 = magnitude ( temp2 );

if (fabs(ml*m2*10)> 0.00001)

temp = dot_product( templ, temp2 ) / ( ml * m2 );

else

printf("diveded by zero\n");

return temp;

}

double maximum2 ( double x, double y )

double tl, t2;

tl = acos ( x );

t2 = acos ( y );

if ( tl > t2 )

return tl;

else return t2;

( /* find maxinum of two number */
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#include <stdio.h>

#define LEVEL (65)

#define ARRAY INITIAL (0.0)

double average_neighbor(int, int, double [] []);

main () {

/* this program fill the miss data with interpolation*/

double depth_image[LEVEL] [LEVEL];

initialization( depth_image );

fill_in( depth_image);

int initialization( double depth_image[LEVEL] [LEVEL] )

int i,j;

FILE *ifp;

float temp;

ifp = fopen( "depth.dat", "r" );

for ( i=0; i < LEVEL; i++ )

for ( j=0; j < LEVEL; j++ ) {

fscanf(ifp,"%fl", &temp);

depth_image[i] [j] = (double) temp;

}
fclose(ifp);

int fill_in( double depth_image[LEVEL][LEVEL]) {

/* use neighbor average to fill in miss data*/

int i,j,done;

FILE *ofp;

double temp_image[LEVEL] [LEVEL], smooth_image[LEVEL] [LEVEL];

double fabs( double );

for(i=0; i<LEVEL; i++)

for (j=0; j<LEVEL; j++)

temp_image[i] [j] = depth_image[i] [j];

smooth_image[0] [0] = 0.0;

for(i=0; i<LEVEL; i++) {

smooth_image[i] [0] = i-l;

smooth_image[0] [i] = i-l;

)

done = 0;

while (!done) {

for (i=l; i<LEVEL; i++)

for(j--l; j<LEVEL; j++) {

if ( temp_image [i] [ j ] == ARRAY_INITIAL ) {

if ( i==l )

smooth_image[i] [j] = temp_image[i+l] [j] ;

else if( j==l ) 134



smooth_image[i] [j] = temp_image[i] [j+l] ;

else if ( i == LEVEL-I )

smooth_image[i] [9] = temp_image[i-l] [j] ;

else if ( j == LEVEL-I )

smooth_image[i] [j] = temp_image[i] [j-l] ;

else

smooth_image[i] [j] = average_neighbor (i, j, temp_image) ;

}

else smooth_image[i] [j] = temp_image[i] [j];

done = i;

/*check to see if it really done*/

for (i=l; i<LEVEL; i++)

for(j=l; j<LEVEL; j++)

if(fabs( smooth_image[i] [i]-ARRAY_INITIAL ) < 0.0001)

done = 0;

/*prepare for the next loop*/

for (i=l; i<LEVEL; i++)

for(j=l; j<LEVEL; j++)

temp_image[i] [j] = smooth_image[i] [j];

ofp = fopen("smooth.dat"
for (i=0; i<LEVEL; i++)

for(j=0; j<LEVEL; j++)

fprintf( ofp, "%fl ",

fprintf( ofp, "\n" ) ;

}

"w" ) ;

smooth_image[i] [j]);

close (ofp) ;

}

****************************** NEIGHBOR*************************/

double average_neighbor(int i, int j, double image[LEVEL] [LEVEL]) {

/*fill in image[i] [j] with local average*/

int row, col, count;

double sum, avg;

count=0;

sum=0;
for(row=i-l; row<=i+l: row++)

for(col=j-l; col<=j+l; col++)

if(image[row] [col] != ARRAY_INITIAL) {

count=count+l;

sum=sum+image [row] [col] ;

}

if (count != 0) {

avg = sum / count;

return( avg );

}
else return( ARRAY INITIAL);

}
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Canny Edge Detector C Programs
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#include <stdio.h>

#include <math.h>

#include <sys/file.h>

#define CANNY THRESHOLD 0.580

#define SIZE 65

#define TSIZE 8

#define GSIZE 5

#define HALFGSIZE 2

#define SQ2PI 2.506628275

/* size of input image

/* size of templates */

/* = sqrt(2.0*PI) */

*/

/* Macros */

#define

#define

#define

#define

#define

#define

MAX SHORT 32767

CNST (MAX_SHORT / (255. * 25.))

/* Constant for maximum res */

SQSIG (6.25 / Iog(CNST)) /* 0.5 * 2 * 6.25 = 6.25 */

maskfun(x,s) ( -( x / s ) * exp( -x * x / ( 2.0 * s ) ) )

/* Make Gaussian mask */

NBRS 24 /* Number of neighbours */

ALFA 3.14159/8. /* angle increment in radian */

/* Coordinates of neighbours, numbered clockwise from zero at X-axis */

char nx[NBRS] = { 3,3,2,1,1,1,2,3,4,4,4,3,2,1,0,0,0,0,0,1,2,3,4,4 };

char ny[NBRS] = { 2,3,3,3,2,1,I,I,2,3,4,4,4,4,4,3,2,1,0,0,0,0,0,i };

int enter_g( float g[TSIZE] [GSIZE] [GSIZE], float n[TSIZE] );

int read data( float pic[SIZE] [SIZE], int *rows, int *cols );

int edge_detector( float inputpic[SIZE] [SIZE], int rows, int cols,

float g[TSIZE] [GSIZE] [GSIZE], float n[TSIZE],

int dir[SIZE] [SIZE], float mag[SIZE] [SIZE] );

int output pic ( int dir[SIZE] [SIZE], float mag[SIZE] [SIZE] );

int nonmaxima_suppression ( float mag[SIZE] [SIZE], int dir[SIZE] [SIZE] );

********************************************************

main () {

float g[TSIZE] [GSIZE] [GSIZE];

float pic[SIZE] [SIZE] ;

int cols, rows;

float n[TSIZE];

float mag[SIZE] [SIZE] ;

int dir[SIZE] [SIZE] ;

/* gaussian filter */

/* input image */

/* size of image */

enter_g( g, n ); /* enter canny operators */

read data( pic, &rows, &cols ); /* open files and read images */

printf ( "applying edge detector to the pic...\n" ); /* find edges */

edge_detector( pic, rows, cols, g, n, dir, mag );

output_pic ( dir, mag ) ;

nonmaxima_suppression ( mag, dir );

printf( "All donekn" );

************************************* *****************************

enter_g( float g[TSIZE] [GSIZE] [GSIZE]7 float n[TSIZE] ){

/* g is gaussian filter, n is norm */

int i,j, k ; /* index */

int o_height, o_width, o_y_cntr, o x cntr;

float s, x;

short dx, dy:

s = SQSIG; /* enter Gaussian templates */

o_height = o_width = GSIZE;

o_y_cntr = o x cntr = HALFGSIZE;

for ( k = 0; k < TSIZE; k++ ) { 137 /* Make 8 directional templates */



for ( j _ 0: j < GSIZE; j++ ) {
dy = j - o_y_cntr:
for ( i _ 0; i < GSIZE; i++ ) {

dx = i - o x cntr;

x = dx * cos ( k * ALFA ) - dy * sin ( k * ALFA );

g[k] [j] [i] = CNST * maskfun ( x, s );

}

}

for ( k = 0; k < TSIZE; k++ ) {

n[k] = 0.0;

for ( j = 0; j < GSIZE; j++ )

for ( i = 0; i < GSIZE; i++ )

n[k] += fabs( g[k] [j] [i] );

}

/* Compute a norm of each template */

****************************** *********************************

read data( float pie[SiZE] [SIZE], int *rows, int *cols )

/* the image contains floating points data */{

int i, j;

FILE *ifp;

float temp;

ifp = fopen ( "smooth.dat", "r" );

*rows = 65;

*cols = 65;

for ( i = 0; i < *rows; i++ )

for ( j = 0; j < *cols; j++ ) {

fscanf ( ifp, "%fl", &temp );

pie[i] [j] = temp;

}

fclose ( ifp );

printf( "done reading\n" );

*************************** DETECTOR*************************/

/* smooth image with gaussian, doing rows first,

then columns.

*/

edge_detector( float inputpic[SIZE] [SIZE], int rows, int cols,

float g[TSIZE] [GSIZE] [GSIZE], float n[TSIZE],

int dir[SIZE] [SIZE], float mag[SIZE] [SIZE] ) {

int d, dir_point, ii, jj, i, j, dx, dy, temp;

float mag__point, sum, curr_mag, a;

for ( i = 0; i < SIZE; i++ )

for ( j = 0; j< SIZE; j++ ){

mag[i] [j] = 0.0;

dir[i] [j] = 0.0;

}

for ( ii = HALFGSIZE + I; ii< SIZE - HALFGSIZE; ii++ )

for ( jj = HALFGSIZE + i; jj< SIZE - HALFGSIZE; jj++ ) {
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/* Find template with strongest match */

mag_point = -MAX_SHORT; /* Ridiculously low value */

for( d = 0; d < TSIZE; d++ ) {

/* Compute scalar product of rotated template with neighborhood */

sum = 0.0;

for( i = 0; i < GSIZE; i++ )

for ( j = 0; j < GSIZE; j++ )

sum += inputpic[ii-2+i] [jj-2+j] * g[d] [i] [j];

curr_mag = ((sum < 0.0) ? (sum - n[d]/2)/n[d] :

(sum + n[d]/2)/n[d]);

if((a = fabs( curr_mag )) > mag_point ) {

mag_point = a;

dir_point = d; /* Remember strongest & where */

}

}/*for d*/

mag[ii] [jj] = mag_point;

dir[ii] [jj] = dir_point;

printf("done edge operator \n"):

}

******************************************* **********************

output__pic ( int dir[SIZE] [SIZE], float mag[SIZE] [SIZE] ) {

float temp;

FILE *ofp;

int i, j;

ofp = fopen ( "canny.edge", "w" );

for ( i = I; i < SIZE; i++ ) {

for ( j = I; j < SIZE; j++ )

if ( mag[i] [j] > CANNY THRESHOLD )

fprintf( ofp, "*" ):

else {

fprintf ( ofp, " " ):

mag[i] [j] = 0.0;

}

fprintf ( ofp, "\n" );

fclose ( ofp );

*********************** SUPPRESSION************************/

int nonmaxima_suppression-( float mag[SIZE] [SIZE], int dir[SIZE] [SIZE] ) {

int i,j;

float xl, x2, temp;

FILE *ofp;

FILE *ofpl;

int thinedge[SIZE] [SIZE];

for ( i = 0; i < SIZE; i++ )

for ( j = 0; j < SIZE; j++ )

thinedge[i] [j] = 0;

for ( i = 2; i < SIZE - I; i++ )

for ( j = 2; j < SIZE - i; j++ )
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if ( mag[i] [j] > 0 )(

switch ( dir[i] [j] ) [

case 0 :

case 4 : xl = mag[i] [j-l] ;

x2 = mag[i] [j+l] ;

break:

case 1 :

case 5 : xl = mag[i+l] [j-l];

x2 = mag[i-l] [j+l];

break;

case 2 :

case 6 : xl = mag[i-l] [j];

x2 = mag[i+l] [j] ;

break;

case 3 :

case 7 : xl = mag[i-l] [j-l];

x2 = mag[i+l] [j+l] ;

break;

default : printf( " error\n" ) ;

xl = ( x2 > xl )? x2 : xl;

temp = mag[i] [j];

if (( temp > CANNY THRESHOLD ) && ( temp > xl ))

thinedge[i] [j] =-i;

fill_edge ( thinedge, dir );

ofp = fopen ( "canny.thinedge", "w" );

ofpl = fopen ( "canny.thinnedge", "w" );

for ( i = i; i < SIZE; i++ ) {

for ( j = i; j < SIZE: j++ )

if ( thinedge[i] [j] ) {

fprintf( ofpl, "%d ", 1 );

fprintf ( ofp, "I" ):

}
else {

fprintf ( ofpl, "%d ", 0 );

fprintf ( ofp, " " );

}
fprintf ( ofpl, "\n" );

fprintf ( ofp, "\n" ) ;

fclose ( ofp );

fclose ( ofpl );

******************************** **************************************

fill_edge( int thinedge[SIZE] [SIZE], int dir[SIZE] [SIZE] ) {

int temp[SIZE] [SIZE];

int i,j;

for ( i = 0: i < SIZE; i++ )

for ( j = 0; j < SIZE; j++ )

temp[i] [j] = 0;

for ( i = 2; i < SIZE - I; i++ ) 140



for ( j - 2; j < SIZE - I; j++ ){
if ( thinedge[i] [j] == 0 ) {

if ( thinedge[i] [j+l] && (( dir[i] [j+l] = 2)

temp [i] [j]++;

if ( thinedge[i] [j-l] && (( dir[i] [j-l] = 2)

temp [i] [j]++;

if ( thinedge[i-l] [j+l]&&(( dir[i-l] [j+l]=3)

temp [i] [j]++;

if ( thinedge[i+l] [j-l]&&(( dir[i+l] [j-l]=3)

temp [i] [j]++;

if ( thinedge[i-l] [j] && (( dir[i-l] [j] = 0)

temp [i] [j]++;

if ( thinedge[i+l] [j] && (( dir[i+l] [j] = 0)

temp [i] [j]++;

if ( thinedge[i-l] [j-l]&&(( dir[i-l] [j-l]=l)

temp [i] [j]++;

if ( thinedge[i+l] [j+l]&&(( dir[i+l] [j+l]=l)

temp [i] [j]++;

}

I ( dir[i] [j+l] = 6

i ( dir[i] [j-l] = 6

( dir[i-l] [j+l] = 7

( dir[i+l] [j-l] = 7

I ( dir[i-l] [j] = 4

I ( dir[i+l] [j] = 4

( dir[i-l] [j-l] = 5

( dir[i+l] [j+l] = 5

for ( i = i; i < SIZE; i++ )

for ( j = i; j < SIZE; j++ )

if (( thinedge[i] [j] == 0 ) && ( temp[i] [j] > 1 ))

thinedge[i] [j] = i;
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#include <stdio.h>

#include <math.h>

#define MAX COMPONENT

#define LEVEL 65

#define COMPONENT SIZE 3

#define LOOP COUNT 1

I00 /* max number of components */

/* smallest size of one component */

/* number of times to expand and shrink */

int data_in ( int edge_image[LEVEL] [LEVEL] );

int expansion_shrinking ( int edge_image[LEVEL] [LEVEL] ):

int expand ( int i, int j, int image[LEVEL] [LEVEL] );

int shrink ( int i, int j, int image[LEVEL] [LEVEL] );

int connected_component ( int edge_image[LEVEL] [LEVEL],

int component_image[LEVEL] [LEVEL] );

int find ( int i, int parent[MAX_COMPONENT] );

int uunion ( int x, int y, int parent[MAX_COMPONENT] );

int edge_image [LEVEL] [LEVEL],

component_image [LEVEL] [LEVEL] ;

data in ( edge_image );

expansion_shrinking ( edge_image );

connected_component ( edge_image , component_image );

output_component ( component_image );

FILE *ifp;

int i,j, tempi;

for ( i = 0; i < LEVEL; i++ )

for ( j = 0; 9 < LEVEL; j++ )

edge_image[i] [j] = 0;

ifp = fopen ( "canny.thinnedge", "r" );

for ( i = I; i < LEVEL; i++ )

for ( j = i; j < LEVEL; j++ ){

fscanf ( ifp, "%d", &tempi );

edge_image[i] [j] = tempi;

}

**************************************** AND SHRINKING****************/

int expansion_shrinking ( int edge_image[LEVEL] [LEVEL] ) {

int temp_image [LEVEL] [LEVEL];

int i,j,loop_count;

for ( loop_count = i; loop_count <= LOOP_COUNT; loop_count++ ){

for ( i = 2; i < LEVEL-l; i++ )

for ( j = 2; j < LEVEL-l; j++ )

temp_image[i] [j] = expand ( i, j, edge_image );

for ( i = I; i < LEVEL; i++ )

for ( j = I; j < LEVEL; j++ )

edge_image[i] [j] = temp_image[i] [j]; |42
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for ( loop_count = i; loop_count <= LOOP_COUNT; loop_count++ ){

for ( i = 2; i < LEVEL-I; i++ )

for ( j = 2; j < LEVEL-l; j++ )

temp_image[i] [j] = shrink ( i, j, edge_image );

for ( i = I; i < LEVEL; i++ )

for ( j = I; j < LEVEL; j++ )

edge_image[i] [j] = temp_image[i] [j] ;

}

int expand ( int i, int j, int image[LEVEL] [LEVEL] ){

if ( image[i] [j] )

return ( 1 );

else

if ( image[i-l] [j-l] i l image[i-l] [j] I I image[i-l] [j+l]

I I image[i] [j+l] I i image[i+l] [j-l] i { image[i+l] [j]

I I image[i+l] [j+l] )

return ( 1 );

else

return ( 0 );

i I image [i] [ j-l]

int shrink ( int i, int j, int image[LEVEL] [LEVEL] ){

if ( image[i-l] [j-l] && image[i-l] [j] && image[i-l] [j+l] && image[i] [j-l]

&& image[i] [j+l] && image[i+l] [j-l] && image[i+l] [j]

&& image[i+l] [j+l] )

return ( 1 );

else

return ( 0 );

********************************** CONNECTED COMPONENT******************/

int connected_component ( int edge_image [LEVEL] [LEVEL],

int component_image [LEVEL] [LEVEL] ) {

int i, j, set count, flag;

int parent[MAX_COMPONENT];

int count[MAX_COMPONENT];

for ( i = 0; i < MAX COMPONENT; i++ )

parent[i] = -i;

/* when parent[i] > 0, it points to its parent node. when it is negative,

it is the root of a connected component, the absolute value is the

number of nodes in that component. */

set count = I;

for ( i = 0; i < LEVEL; i++ )

for ( j = 0; j < LEVEL; j++ )

component_image {i] [ j] = 0;

for ( j = i; j < LEVEL; j++ )

if ( edge_image[l] [j] )
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component_image[l] [j] = set_count;
else

if ( j > 1 )

if ( edge_image[l][j-l] )

set count++;

for ( i = 2; i < LEVEL; i++ )

if ( edge_image[i][l] )

component_image[i] [I] = set_count;
else

if ( edge_image[i-l] [i] )

set count++;

if (( component_image[l] [i]) && (component_image[2] [i]) )

uunion ( component_image[l] [I], component_image[2] [i], parent );

for ( i = 2; i < LEVEL; i++ )

for ( j = 2; j < LEVEL - i; j++ ) {

flag = 0;

if ( edge_image[i] [j] ) { /*******/

if ( edge_image [i] [j-l] ) {

component_image[i] [j] = component_image[i] [j-l] ;

flag = I;

}
else

if ( edge_image[i-l] [j-l] ) {

component_image[i] [j] = component_image[i-l] [j-l];

flag = 2;

}
else

if ( edge_image[i-l] [j] ){

component_image[i] [j] = component_image[i-l] [j];

flag = 3;

}
else

if ( edge_image[i-l] [j+l] ){

component_image[i] [j] = component_image[i-l] [j+l];

flag = 4;

}

else /* start a new component */ {

set count++;

component_image[i] [j] = set_count;

}
} /******/

if ( flag == 1 ) {

if ( component_image[i-l] [j] )

uunion(component_image[i] [j-l], component_image[i-l] [j], parent);

if ( component_image[i-l] [j+l] )

uunion(component_image[i] [j-l], component_image[i-l] [j+l], parent);

}
else

if ( flag == 2 )

if ( component_image[i-l] [j+l] )

uunion( component_image[i-l] [j-l],component_image[i-l] [j+l],

parent );

}/* j loop */

for ( i = i; i < LEVEL; i++ )

for ( j = i; j < LEVEL; j++ )

if ( component_image[i] [j] )

component_image[i] [j] = find ( component_image[i] [j], parent );
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for ( i = 0; i < MAX COMPONENT; i++ )

count [i] = 0;

for ( i = I; i < LEVEL; i++ )

for ( j = I; j < LEVEL; j++ )

if ( component_image [i] [ j ] )

count [component_image [i] [j] ] ++;

for ( i = i; i < LEVEL; i++ )

for ( j = I; j < LEVEL; j++ )

if ( count[ component_image[i] [j] ] < COMPONENT_SIZE )

component_image[i] [j] = 0;

int p, prep;

prep = p = x;

while ( p > 0 ){

prep = p;

p = parent [p] ;

}

return prep:

int rl, r2, cl, c2;

rl = find ( x, parent );

r2 = find ( y, parent );

if ( rl != r2 ){

cl = abs ( parent[rl] );

c2 = abs ( parent[r2] );

if ( cl > c2 ) {

parent[rl] = - ( cl + c2 );

parent[r2] = rl;

}
else {

parent[r2] = - ( cl + c2 );

parent[rl] = r2;

}

}

*************************************** COMPONENT***************************/

output_component ( int component_image[LEVEL] [LEVEL] ) {

int i,j;

FILE *ofp;

ofp = fopen ( "canny.component", "w" )',

for ( i = I; i < LEVEL; i++ ) {

for ( j = i; j < LEVEL; j++ )

if ( component_image[i] [j] == 0 )

fprintf ( ofp, " " );

else

fprintf ( ofp, "%c",49 + component_image[i] [j] );

fprintf ( ofp, "\n" ); 145



}

fclose ( ofp );
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THIS PROGRAM USE SOBEL OPERATOR TO FIND EDGES

TEMPLATE1 : TEMPLATE2 :

-i 0 1 1 2 1

-2 0 2 0 0 0

-I 0 1 -i -2 -I

INPUT : SMOOTH.DAT

OUTPOUT : SOBEL.EDGE .... raw edge

SOBEL.THINEDGE ---thin edge

SOBEL.THINNEDGE ---thin edge in numerical form

5/21/91

#include <stdio.h>

#include <math.h>

#define ARRAY INITIAL ( 0.0 )

#define SIZE ( 65 )

#define SOBEL THRESHOLD ( 0.4 )

#define PI ( 3.1415926 }

int initialization ( double depth image [ ] [ SIZE ],

double edge_image [ ] [ SIZE ],

double angle_image [ ] [ SIZE ]);

/* read in the depth data and initialize edge_image and angle image to be blank */

double templatel ( int i, int j, double depth_image [ ] [ SIZE ] );

/* calculate the increment in x direction */

double template2 ( int i, int j, double depth_image [ ] [ SIZE ] );

/* calculate the increment in y direction */

double max4 ( double xl, double x2, double x3, double x4 );

/* calculate the maximum of the 4 numbers */

int sobel_operator ( double depth image [ ] [ SIZE ],

double edge_image [ ] [ SIZE ],

double angle_image [ ] [ SIZE ] );

/* apply sobel operator to depth_image and return edge_image and angle_image for la_

int nonmaxima_suppression ( double image_image [ ] [ SIZE ],

double angle_image [ ] [ SIZE ] );

/* apply non-maxima suppression to the edge image */

*****************************

main ( ) {

double depth_image [ SIZE ] [ SIZE ];

double edge_image [ SIZE ] [ SIZE ];

double angle_image [ SIZE ] [ SIZE ];

initialization ( depth_image, edge_image, angle image );

sobel_operator ( depth_image, edge_image, angle_image );

nonmaxima_suppression ( edge_image, angle_image );
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**************************************

int initialization ( double depth_image [ ] [ SIZE ],

double edge_image [ ] [ SIZE ],

double angle_image [ ] [ SIZE ] ) {

int i, j;

FILE *ifp;

float temp;

ifp = fopen ( "smooth.dat", "r" );

for ( i = 0; i < SIZE; i++ )

for ( j = 0; j < SIZE; j++ ){

fscanf ( ifp, "%fl", &temp );

depth_image [i] [j] = temp:

}

fclose ( ifp );

for ( i = I; i < SIZE; i++ ) {

edge_image [0] [i] = i - I;

edge_image [i] [0] = i - i;

angle_image[0] [i] = i - i;

angle_image[i] [0] = i - i:

}

for ( i = I; i < SIZE; i++ )

for ( j = i; j < SIZE; j++ ) {

edge_image [i ] [ j ] = 0.0 ;

angle_image[i] [j] = 0.0,

}

}/* INITIALIZATION */

***************************

double templatel ( int i, int j, double depth_image[SIZE][SIZE] ){

double templ, temp2:

templ = depth_image[i-l] [j-l] ;

templ += 2 * depth_image[i ] [j-l] ;

templ += depth_image[i+l] [j-l] ;

temp2 = depth_image[i-l] [j+l];

temp2 += 2 * depth_image[i ] [j+l];

temp2 += depth_image[i+l] [j+l];

return ( temp2 - templ );

***************************

double template2 ( int i, int j, double depth_image[SIZE][SIZE] ){

double templ, temp2;

templ = depth_image[i+l] [j-l];

templ += 2 * depth_image[i+l] [j ];

templ += depth_image[i+l] [j+l];

temp2 = depth_image[i-l] [j-l] ;

temp2 += 2 * depth_image[i-l] [j ]; 149



temp2 += depth_image[i-l] [j+l];

return ( temp2 - templ );

/********SOBEL OPERATOR*******/

int sobel_operator ( double depth image [ ] [ SIZE ],

double edge_image [ ] [ SIZE ],

double angle_image [ ] [ SIZE ] ){

int i, j;

FILE *opf;

double magnitude, dx, dy;

for ( i = 2; i < SIZE - I; i++ ){

for ( j = 2; j < SIZE - I; j++ ){

dx = templatel ( i, j, depth_image );

dy = template2 ( i, j, depth_image );

magnitude = dx * dx + dy * dy;

if ( magnitude > SOBEL THRESHOLD ) {

edge_image[i] [j] = magnitude;

angle_image[i] [j] = atan2 ( dy, dx ) ;

}

/* output the current result */

opf = fopen ( "sobel.edge", "w" ):

for ( i = I; i < 80; i++ )

fprintf ( opf, "-" );

fprintf ( opf, "\n\n" ):

fprintf ( opf,
" OUTPUT FROM SOBEL OPERATOR BEFORE THINNING WITH THREAHOLD %fl

\n\n", SOBEL THRESHOLD );

for ( i = i: i < 80: i++ )

fprintf ( opf, "-" );

fprintf ( opf, "\n" );

for ( i = i; i < SIZE; i++ ) {

for ( j = i; j < SIZE; j++ )

if ( edge_image[i] [j] > SOBEL_THRESHOLD )

fprintf ( opf, "*" );

else fprintf ( opf, " " );

fprintf ( opf, "\n" );

}
for ( i = i; i < 80; i++ )

fprintf ( opf, "-" );

fclose ( opf );

}

***************************

double max4 ( double xl, double x2, double x3, double x4 ){

double tl,t2; |50



if ( xl > x2 )

tl B xl;

else tl = x2;

if ( x3 > x4 )

t2 = x3;

else t2 = x4;

if ( tl > t2 )

return tl;

else return t2;

****************-****** SUPPRESSION***********/

int nonmaxima_suppression ( double edge_image [ ] [ SIZE ],
double angle_image [ ] [ SIZE ]){

int i, j, flag;

double alfa, xl, x2, temp;

FILE *opf:

FILE *opfl;

int thinedge[ SIZE ] [ SIZE ];

for ( i = 0; i < SIZE; i++ )

for ( j = 0; j < SIZE; j++ )

thinedge[i] [j] = 0;

for ( i = 2; i < SIZE - i; i++ )

for ( j = 2; j < SIZE - I; j++ ){

alfa = angle_image[i] [j];
while ( alfa < 0 )

alfa += 2 * PI;

while ( alfa > 2 * PI )

alfa -= 2 * PI;

/* alfa is in [0, 2*PI] */

flag = 0;
while ( alfa > PI / 4 ){

alfa -= PI / 4;

flag++;

}
if ( alfa > PI / 8 )

flag++;

switch ( flag ) {
case 0 :

case 4 :

case 8 : xl = edge_image[i] [j-l];

x2 = edge_image[i] [j+l];
break;

case 1 :

case 5 : xl = edge_image[i+l] [j-l];

x2 = edge_image[i-l] [j+l];
break;

case 2 :

case 6 : xl = edge_image[i-l] [j];

x2 = edge_image[i+l] [j];
break;

case 3 :

case 7 : xl = edge_image[i-l] [j-l];

x2 = edge_image[i+l] [j+l];
break;

dafault : printf ( " error\n " );
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xl - ( x2 > xl )? x2 : xl ;

temp = edge_image[i] [j];

if (( temp > SOBEL_THRESHOLD ) && ( temp >= xl ))

thinedge[i] [j] = I:

opf = fopen ( "sobel.thinedge", "w" );

opfl = fopen ( "sobel.thinnedge", "w" ):

for ( i = I; i < 80; i++ )

fprintf ( opf , "-" );

fprintf ( opf, "%\n\n" );

fprintf ( opf,
" OUTPUT FROM SOBEL OPERATOR AFTER THINNING

fprintf ( opf, "\n\n" );

for ( i = I; i < 80; i++ )

fprintf ( opf, "-" );

fprintf ( opf, "\n" );

for ( i = I; i < SIZE; i++ ){

for ( j = i; j < SIZE; j++ ){

if ( thinedge[i] [j] )

fprintf ( opf, "%d", thinedge[i][j] );

else fprintf ( opf, " " );

fprintf (opfl, "%d ", thinedge[i] [j] ):

}
fprintf ( opf, "\n" );

fprintf (opfl, "\n" );

}

for ( i = i; i < 80; i++ )

fprintf ( opf, "-" );

fclose ( opf );

fclose ( opfl );

,, );
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#include <stdio.h>

#include <math.h>

#define MAX COMPONENT

#define LEVEL 65

#define COMPONENT SIZE 0

#define LOOP COUNT 1

I00 /* max number of components */

/* smallest size of one component */

/* number of times to expand and shrink */

int data_in ( int edge_image[LEVEL] [LEVEL] );

int expansion_shrinking ( int edge image[LEVEL] [LEVEL] );

int expand ( int i, int j, int image[LEVEL] [LEVEL] );

int shrink ( int i, int j, int image[LEVEL] [LEVEL] );

int connected_component ( int edge_image[LEVEL] [LEVEL],

int component_image[LEVEL] [LEVEL] );

int find ( int i, int parent[MAX_COMPONENT] );

int uunion ( int x, int y, int parent[MAX_COMPONENT] );

int edge_image[LEVEL] [LEVEL],

component_image[LEVEL] [LEVEL];

data_in ( edge image );

expansion_shrinking ( edge_image ):

connected component ( edge image , component image );

output_component ( component_image );

FILE *ifp;

int i,j, tempi;

for ( i = 0; i < LEVEL; i++ )

for ( j = 0; j < LEVEL; j++ )

edge_image[i] [j] = 0;

ifp = fopen ( "sobel.thinnedge", "r" );

for ( i = I; i < LEVEL; i++ )

for ( j = I; j < LEVEL; j++ ){

fscanf ( ifp, "%d", &tempi );

edge_image[i] [j] = tempi;

}

**************************************** AND SHRINKING****************/

int expansion_shrinking ( int edge_image[LEVEL] [LEVEL] ) {

int temp_image [LEVEL] [LEVEL];

int i,j,loop_count;

for ( loop_count = I; loop_count <= LOOP_COUNT; loop_count++ ){

for ( i = 2; i < LEVEL-l; i++ )

for ( j = 2; j < LEVEL-l; j++ )

temp_image[i] [j] = expand ( i, j, edge_image );

for ( i = i; i < LEVEL; i++ )

for ( j = I; j < LEVEL; j++ )

edge_image[i] [j] = temp_image[i] [j]; |53



for ( loop_count = I; loop_count <= LOOP_COUNT;loop_count++ ){
for ( i = 2; i < LEVEL-l: i++ )

for ( j = 2; j < LEVEL-l; j++ )
temp_image[i] [j] = shrink ( i, j, edge_image );

for ( i = I; i < LEVEL; i++ )

for ( j = i; j < LEVEL; j++ )

edge_image[i] [j] = temp_image[i] [j];

int expand ( int i, int j, int image[LEVEL] [LEVEL] ) {

if ( image[i] [j] )

return ( 1 );

else

if ( image[i-l] [j-1] I I image[i-l] [j] l I image[i-l] [j+l] I I image[i] [j-l]

I I image[i] [j+l] I I image[i+l] [j-l] I i image{i+l] [j]

I I image[i+l] [j+l] )

return ( 1 );

else

return ( 0 );

int shrink ( int i, int j, int image[LEVEL] [LEVEL] ){

if ( image[i-l] [j-l] && image[i-l] [j] && image[i-l] [j+l] && image[i] [j-l]

&& image[i] [j+l] && image[i+l] [j-l] && image[i+l] [j]

&& image[i+l][j+l] )

return ( 1 );

else

return ( 0 );

********************************** CONNECTED COMPONENT******************/

int connected_component ( int edge_image[LEVEL] [LEVEL],

int component_image[LEVEL] [LEVEL] ) {

int i, j, set count, flag;

int parent[MALCOMPONENT] ;

int count[MAX COMPONENT];

for ( i = 0; i < MAX COMPONENT; i++ )

parent[i] = -I;

/* when parent[i] > 0, it points to its parent node. when it is negative,

it is the root of a connected component, the absolute value is the

number of nodes in that component. */

set count = i;
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for ( j - 0; j < LEVEL: j++ )
component_image [i] [ j ] = 0;

for ( j = I; j < LEVEL; j++ )
if ( edge_image [ i] [ j] )

component_image[l] [j] = set_count;
else

if ( j > 1 )
if ( edge_image[l] [j-l] )

set count++;

for ( i = 2; i < LEVEL; i++ )
if ( edge_image [i] [i] )

component_image[i] [I] = set_count;
else

if ( edge_image[i-l] [I] )
set count++;

if (( component_image[l] [i]) && (component_image[2] [i]) )
uunion ( component_image[l] [i], component_image [2] [i], parent ) ;

for ( i = 2; i < LEVEL; i++ )

for ( j = 2; j < LEVEL - I; j++ ){

flag = 0;

if ( edge_image[i] [j] ) { /*******/

if ( edge_image[i] [j-l] ) {

component_image[i] [j] = component_image[i] [j-l] ;

flag = 1 ;

}
else

if ( edge_image[i-l] [j-l] ) {

component_image[i] [j] = component_image[i-l] [j-l] ;

flag = 2 ;

)
else

if ( edge_image[i-l] [j] ) {

component_image[i] [j] -- component_image[i-l] [j] ;

flag = 3;

}
else

if ( edge_image[i-l] [j+l] ) {

component_image [i] [j] = component_image [i-1] [j+l] ;

flag = 4 ;

)

else /* start a new component */ {

set count++;

component_image[i] [j] = set_count;

}
) I******I

if ( flag == 1 ) {

if ( component_image[i-l] [j] )

uunion(component_image[i] [j-l], component_image[i-l] [j], parent);

if ( component_image[i-l] [j+l] )

uunion(component_image[i] [j-l], component_image[i-l] [j+l], parent) ;

}
else

if ( flag == 2 )

if ( component_image[i-l] [j+l] )

uunion( component_image[i-l] [j-l],component_image[i-l] [j+l],

parent );

}/* j loop */

for ( i = i; i < LEVEL; i++ )
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for ( j ffiI; j < LEVEL; j++ )

if ( component_image[i] [j] )

component_image[i] [j] = find ( component_image[i] [j], parent );

for ( i = 0; i < MAX COMPONENT; i++ )

count[i] = 0;

for ( i = i; i < LEVEL; i++ )

for ( j = I; j < LEVEL; j++ )

if ( component_image[i] [j] )

count[component_image[i][j]]++;

for ( i = I; i < LEVEL; i++ )

for ( j = I; j < LEVEL; j++ )

if ( count[ component_image[i] [j] ] < COMPONENT_SIZE )

component_image[i] [j] = 0;

int p, prep;

prep = p = x;

while ( p > 0 ){

prep = p;

p = parent[p];

}

return prep;

int rl, r2, cl, c2;

rl = find ( x, parent );

r2 = find ( y, parent );

if ( rl != r2 ) {

cl ffi abs ( parent [rl] ) ;

c2 = abs ( parent [r2] ) ;

if ( cl > c2 ){

parent[rl] = - ( el + c2 );

parent[r2] = rl;

}
else {

parent[r2] = - ( cl + c2 );

parent[rl] = r2;

}

}

*************************************** COMPONENT***************************/

output_component ( int component_image[LEVEL] [LEVEL] ){

int i,j;

FILE *ofp;

ofp = fopen ( "sobel.component", "w" );

for ( i = I; i < LEVEL; i++ ){

for ( j = i; j < LEVEL; j++ ) 156



if ( component_image[i] [j] == 0 )

fprintf ( ofp, " " );

else

fprintf ( ofp, "%c",49 + component_image[i] [j] );

fprintf ( ofp, "\n" ) ;

}

fclose ( ofp );
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5. CONCLUDING REMARKS

The model and representation designed and implemented for the Servo and Primi-

tive levels can be easily extended to the higher levels. This will be useful in finding

surface features in higher levels, and in building a global model to be used for local

path planning, object tracking, object recognition and navigation.

HARPS (Hierarchical Ada Robot Programming System) uses camera input (light

intensity data). We believe that our result complements and enhance HARPS. The

Y-frame model and data structures were implemented in ADA, which can be incor-

porated into HARPS easily.

The results and experience from this research project will help guide future

research in world modeling and sensor processing with range data. The laser sensor

results can be used in studies on sensor fusion.
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